

Introduction to Field Programmable Gate Arrays

Hannes Sakulin CERN / EP-CMD

ESIPAP school, Online, 22 February, 2021

What is a Field Programmable Gate Array? .. a quick answer for the impatient

- An FPGA is an integrated circuit
 - Mostly digital electronics
- An FPGA is programmable in the in the field (=outside the factory), hence the name "field programmable"
 - Design is specified by schematics or with a hardware description language
 - Tools compute a programming file for the FPGA
 - The FPGA is configured with the design (gateware / firmware)
 - Your electronic circuit is ready to use

With an FPGA you can build electronic circuits ... without using a bread board or soldering iron ... without plugging together NIM modules ... without having a chip produced at a factory

Outline

- Quick look at digital electronics
- Short history of programmable logic devices
- FPGAs and their features
- Programming techniques
- Design flow
- Example Applications in the Trigger and DAQ domain

Acknowledgement

 Parts of this lecture are based on material by Clive Maxfield, author of several books on FPGAs. Many thanks for his kind permission to use his material!

Re-use

 Re-use of the material is permitted only with the written authorization of both Hannes Sakulin (<u>Hannes.Sakulin@cern.ch</u>) and Clive Maxfield.

Digital electronics

The building blocks: logic gates

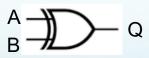
Truth table

C equivalent

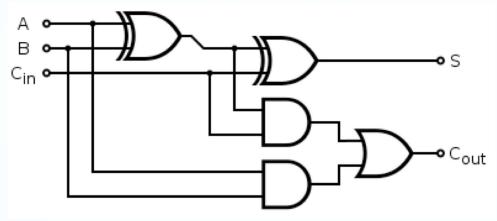

AND gate

INPUT		OUTPUT	
Α	В	A AND B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

q = a && b;


OR gate

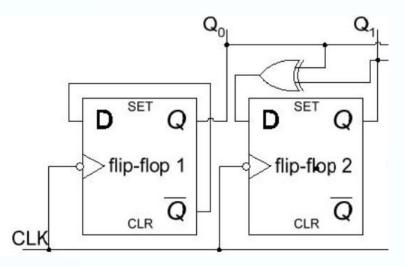
INPUT		OUTPUT
Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1


 $q = a \parallel b$;

Exclusive OR gate XOR gate

q = a != b;

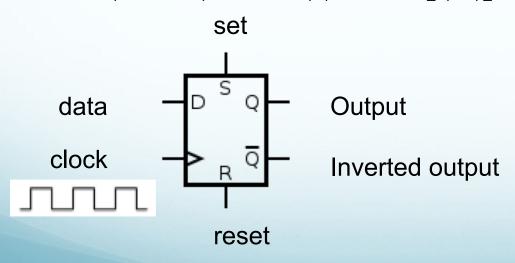
Combinatorial logic (asynchronous)


Outputs are determined by Inputs, only

Example: Full adder with carry-in, carry-out

A	В	C _{in}	S	Cout
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

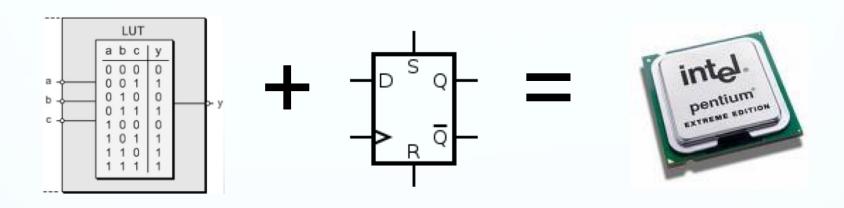
Combinatorial logic may be implemented using Look-Up Tables (LUTs)


(Synchronous) sequential logic

Outputs are determined by Inputs and their History (Sequence) The logic has an internal state

2-bit binary counter

https://www.zeepedia.com/read.php?b=9&c=32&d flip-flop based implementation digital logic design

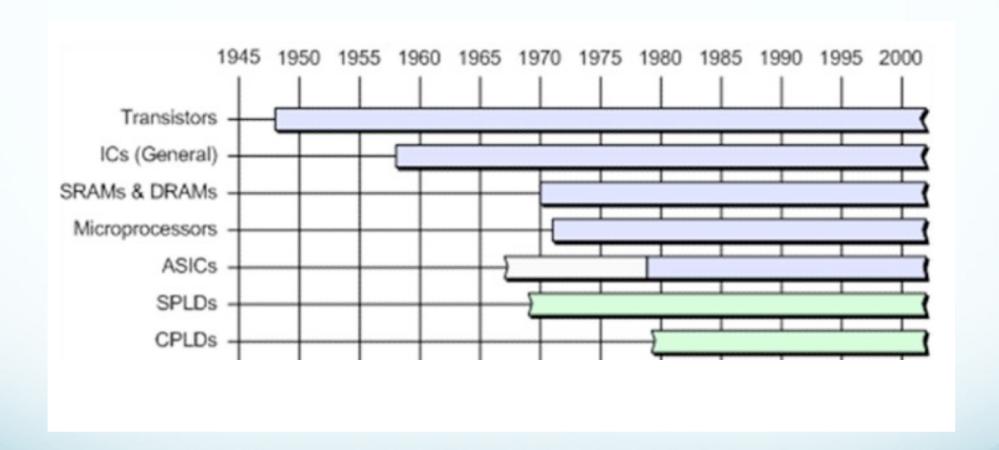

D Flip-flop:

samples the data at the rising (or falling) edge of the clock

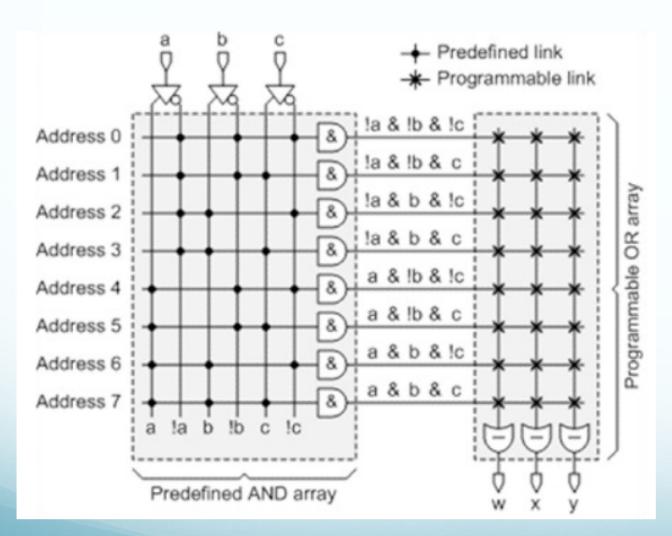
The output will be equal to the last sampled input until the next rising (or falling) clock edge

D Flip-flop (D=data, delay)

Synchronous sequential logic



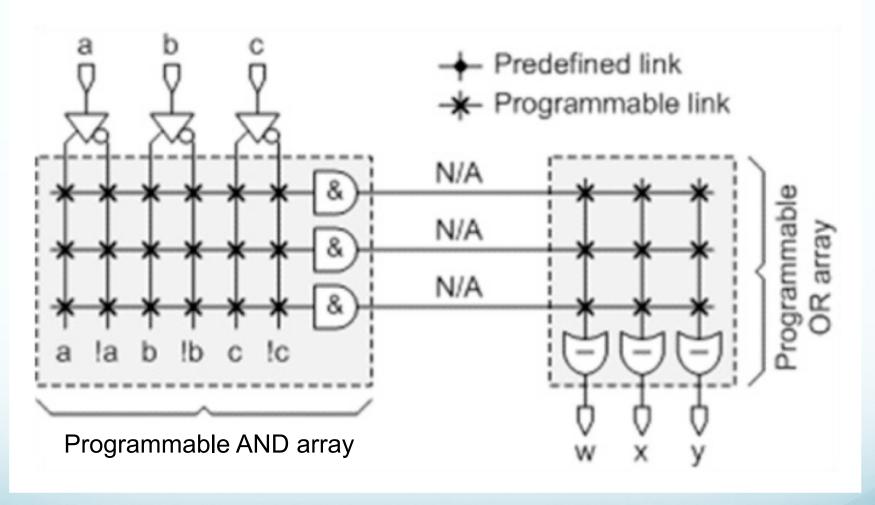
Using Look-Up-Tables and Flip-Flops any kind of digital electronics may be implemented


Of course there are some details to be learnt about electronics design ...

Programmable digital electronics

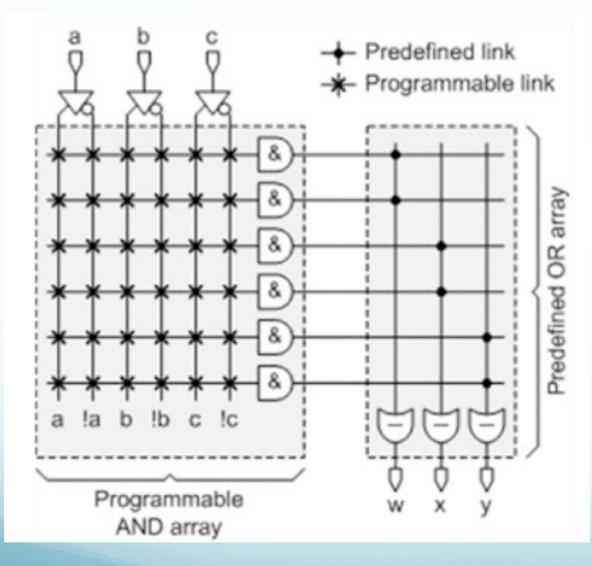
Long long time ago ...

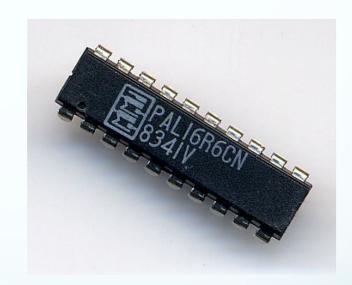
Simple Programmable Logic Devices (sPLDs) a) Programmable Read Only Memory (PROMs)



Late 60's

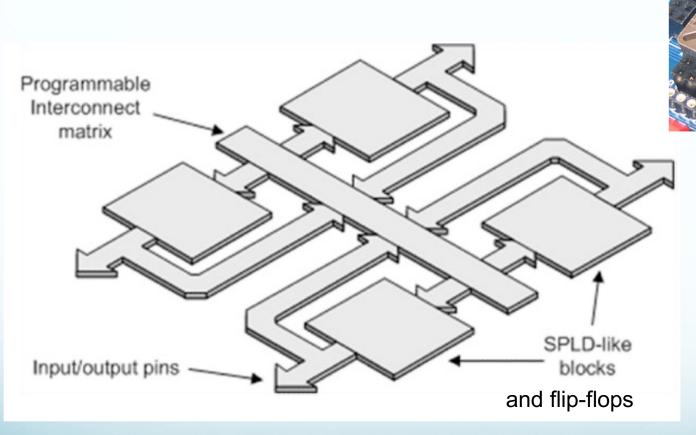
Unprogrammed PROM (Fixed AND Array, Programmable OR Array) 2

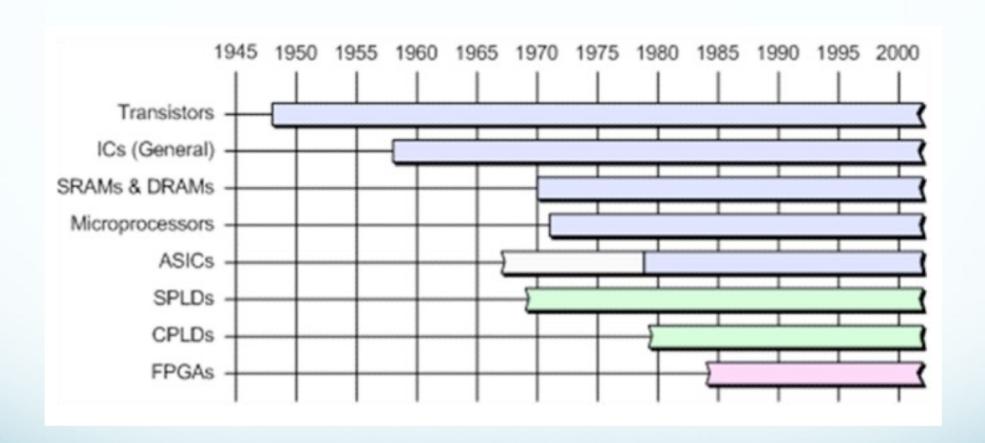

Simple Programmable Logic Devices (sPLDs) b) Programmable Logic Arrays (PLAs)



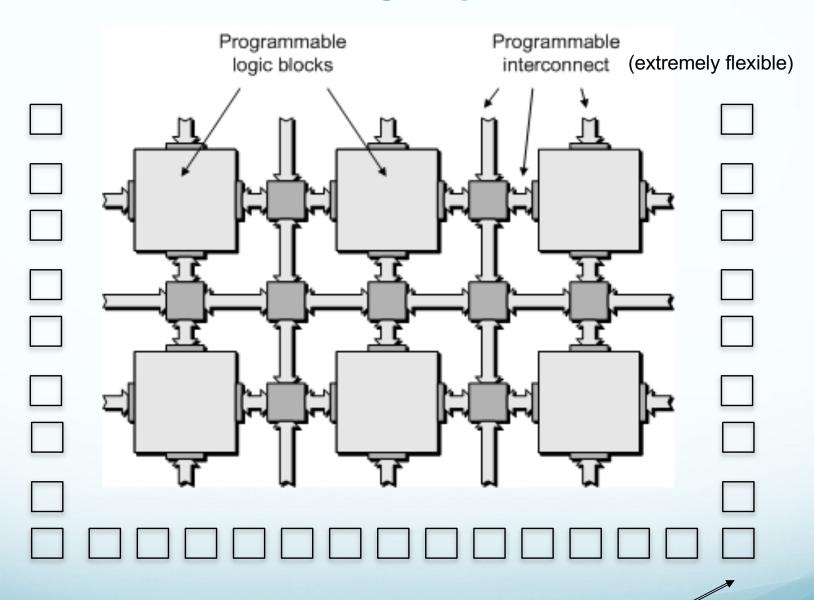
Unprogrammed PLA (Programmable AND and OR Arrays)

Most flexible but slower


Simple Programmable Logic Devices (sPLDs) c) Programmable Array Logic (PAL)


Unprogrammed PAL (Programmable AND Array, Fixed OR Array)

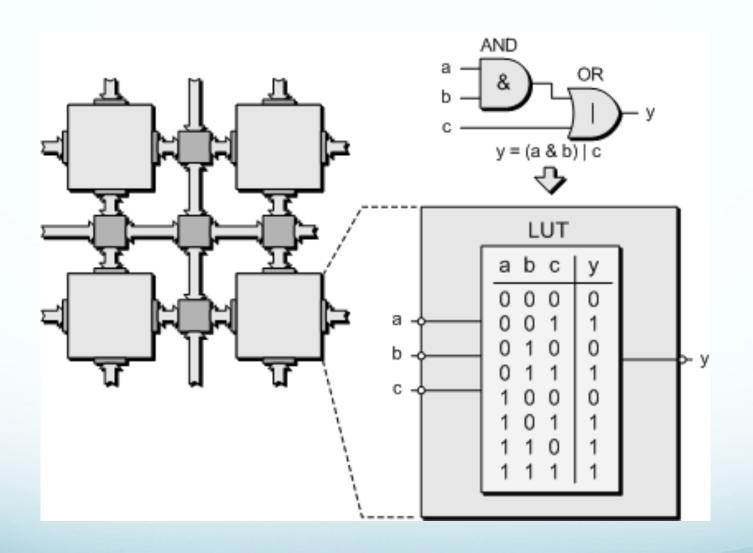
Complex PLDs (CPLDs)



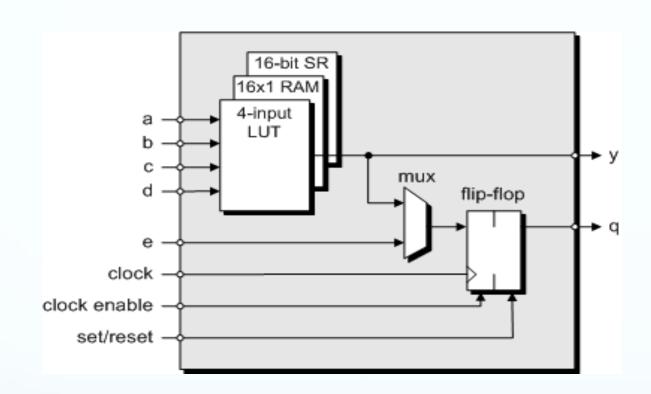
Coarse grained 100's of blocks, restrictive structure (EE)PROM based

FPGAs ...

FPGAs



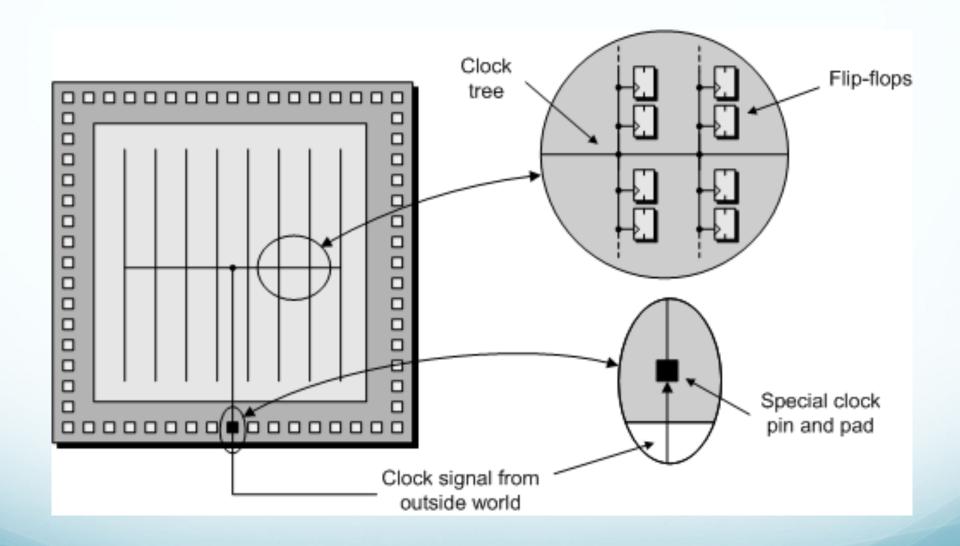
Fine-grained: 100.000's of blocks


today: up to 5 million logic blocks

Programmable Input / Output pins

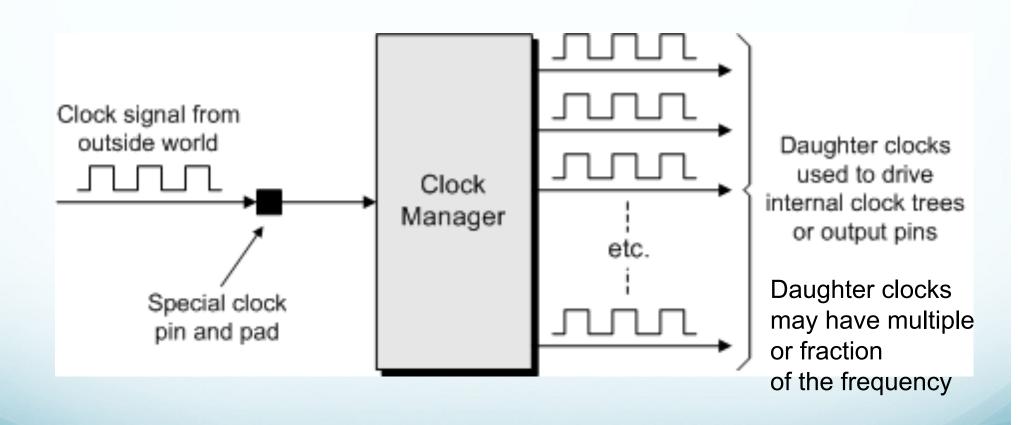
LUT-based Fabrics

Typical LUT-based Logic Cell

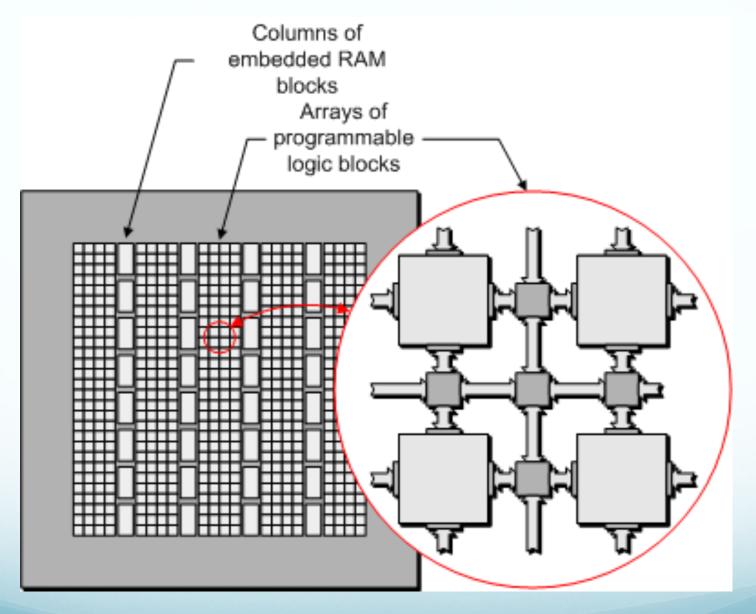

Xilinx: logic cell,

Altera: logic element

- LUT may implement any function of the inputs
- Flip-Flop registers the LUT output
- May use only the LUT or only the Flip-flop
- LUT may alternatively be configured a shift register

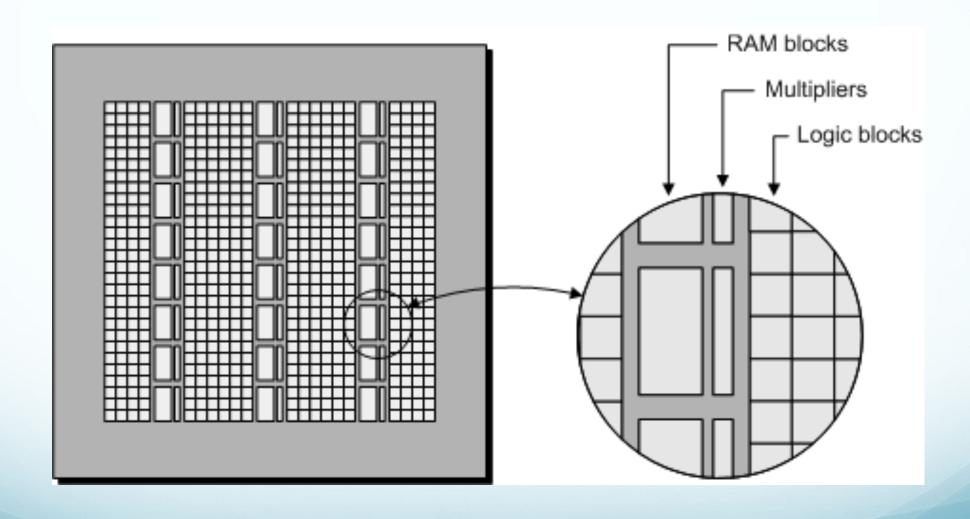

Additional elements (not shown): fast carry logic

Clock Trees

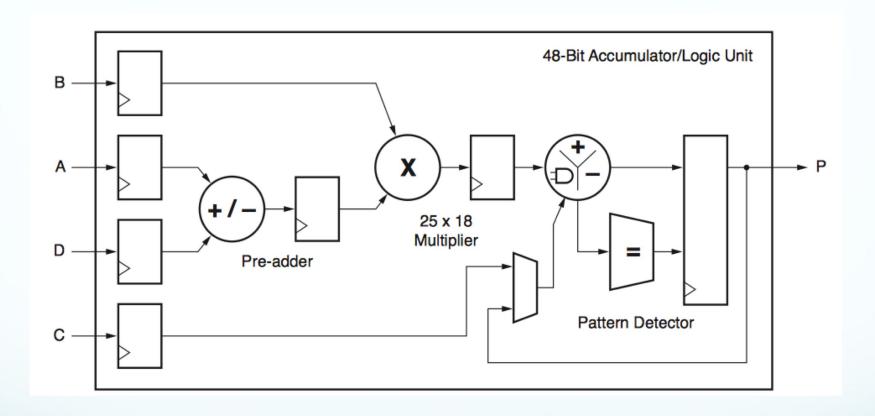


Clock trees guarantee that the clock arrives at the same time at all flip-flops

Clock Managers

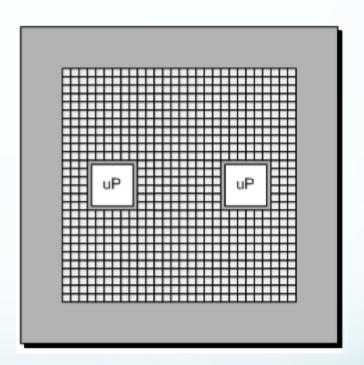


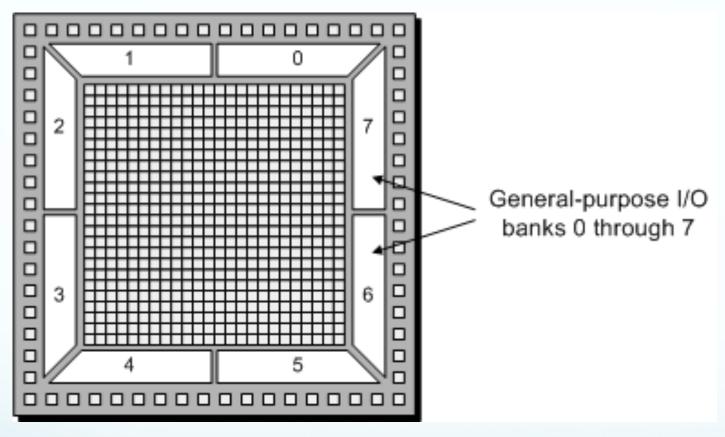
Embedded RAM blocks



Today: Up to ~500 Mbit of RAM2

Embedded Multipliers & DSPs

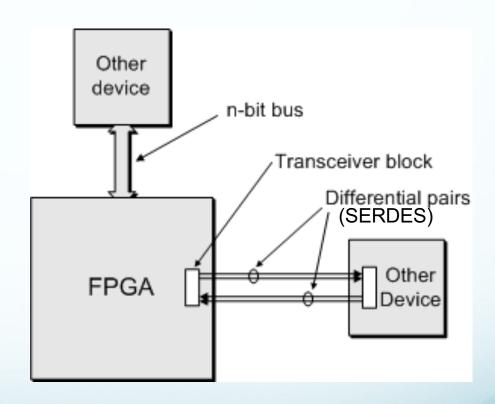

Digital Signal Processor (DSP)


DSP block (Xilinx 7-series)
Up to several 1000 per chip

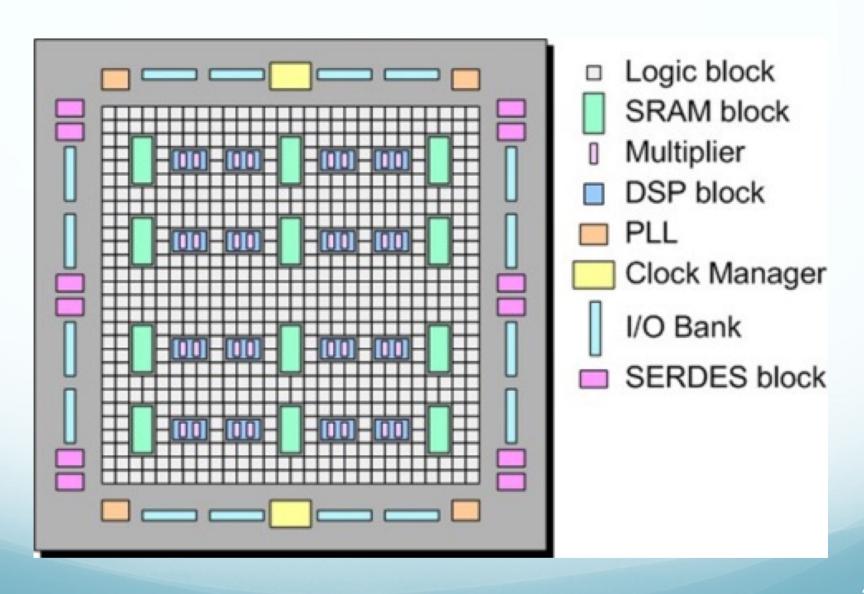
Soft and Hard Processor Cores

- Soft core
 - Design implemented with the programmable resources (logic cells) in the chip
- Hard core
 - Processor core that is available in addition to the programmable resources
 - E.g.: Power PC, ARM

General-Purpose Input/Output (GPIO)

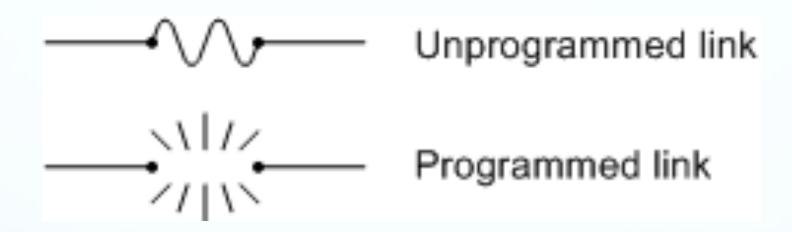

Today: Up to 1200 user I/O pins
Input and / or output
Voltages from (1.0), 1.2 .. 3.3 V
Many IO standards

Single-ended: LVTTL, LVCMOS, ... 26

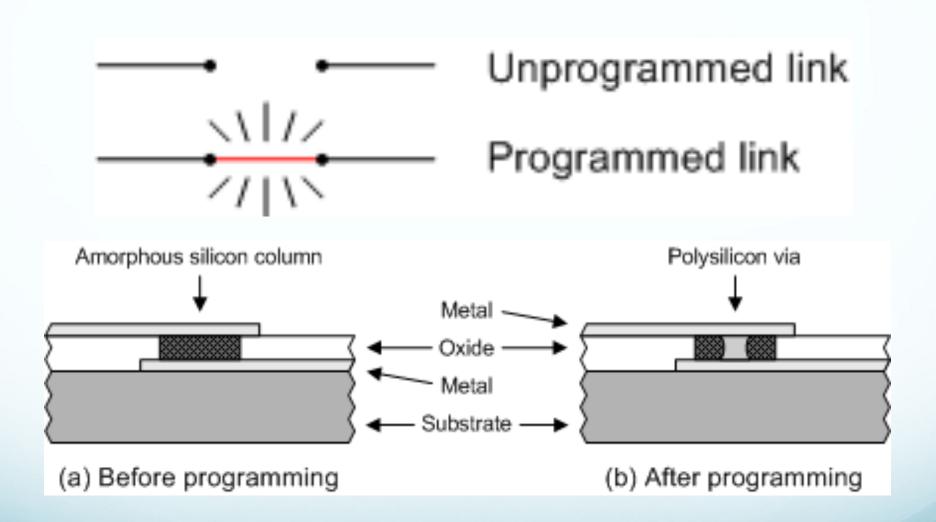

Differential pairs: LVDS, ...

High-Speed Serial Interconnect

- Using differential pairs
- Standard I/O pins limited to about 1 Gbit/s
- Latest serial transceivers: typically 10 Gb/s, 13.1 Gb/s,
 - up to 32.75 Gb/s
 - up to 56 Gb/s with Pulse Amplitude Modulation (PAM)
- FPGAs with multi-Tbit/s IO bandwidth

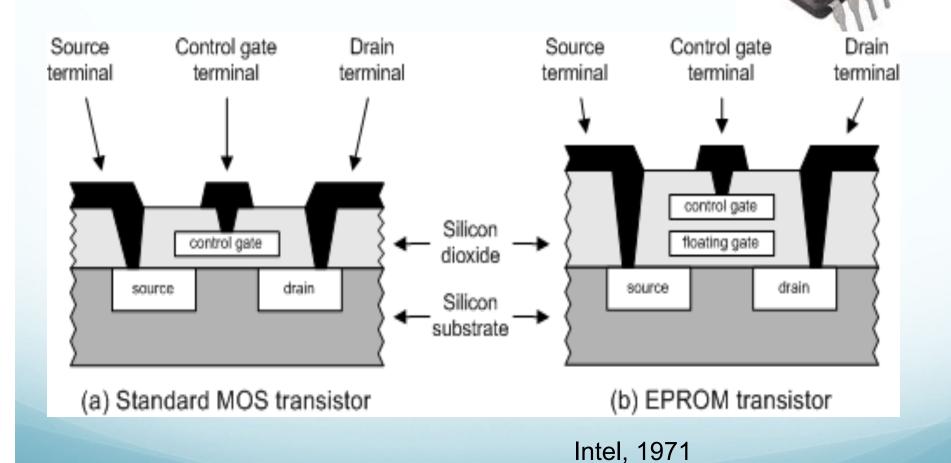


Components in a modern FPGA

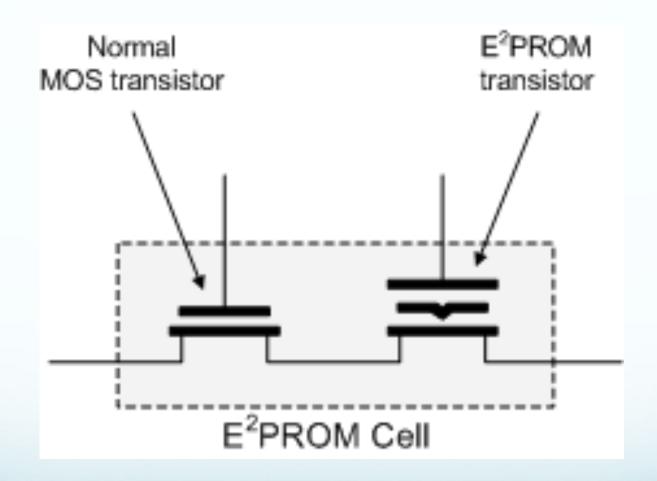


Programming techniques

Fusible Links (not used in FPGAs)

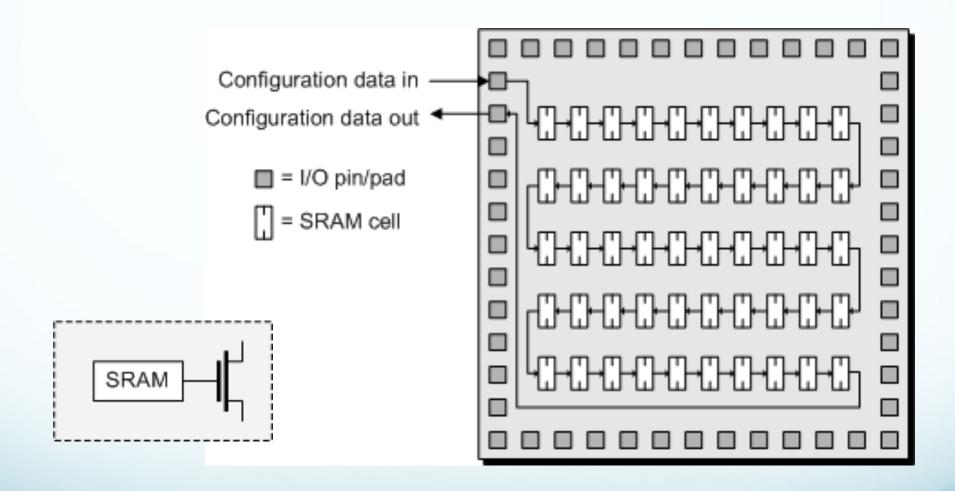


Antifuse Technology

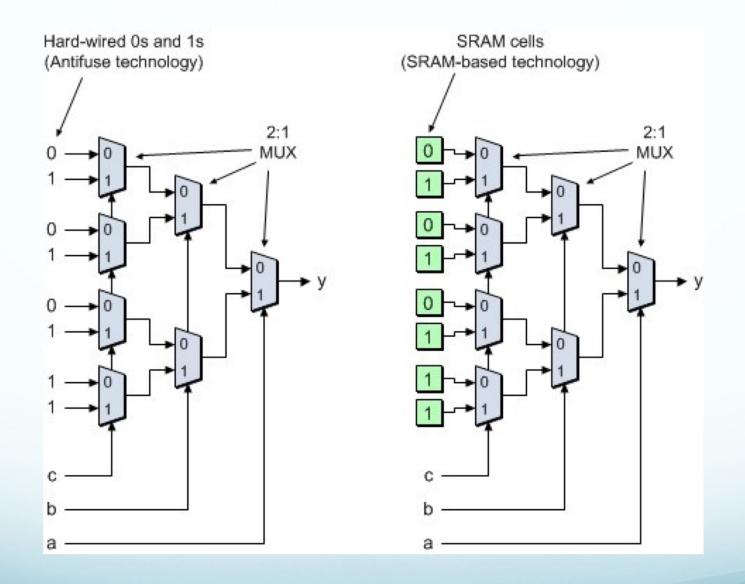

EPROM Technology

Erasable Programmable Read Only Memory

EEPROM and FLASH Technology

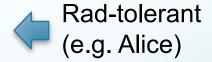

Electrically Erasable Programmable Read Only Memory

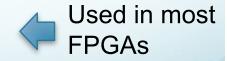
EEPROM: erasable word by word


FLASH: erasable by block or by device

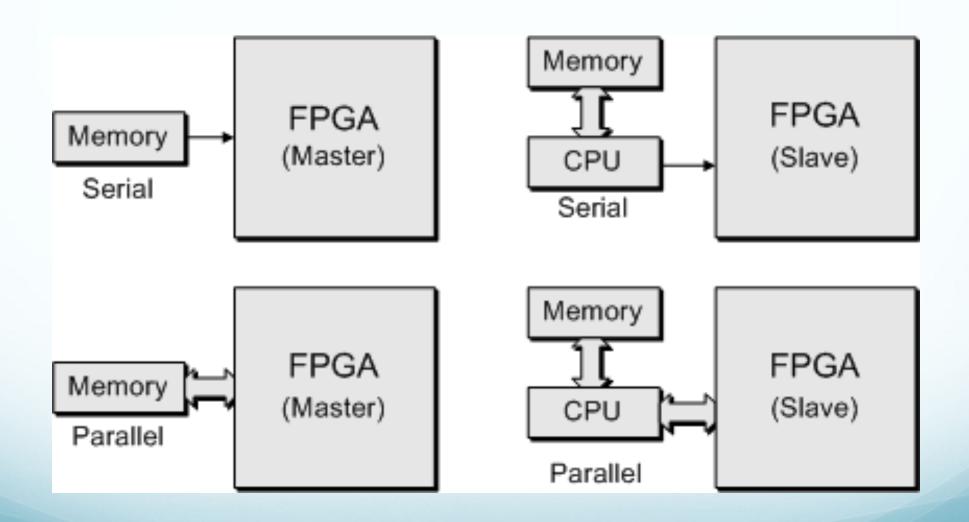
SRAM-Based Devices

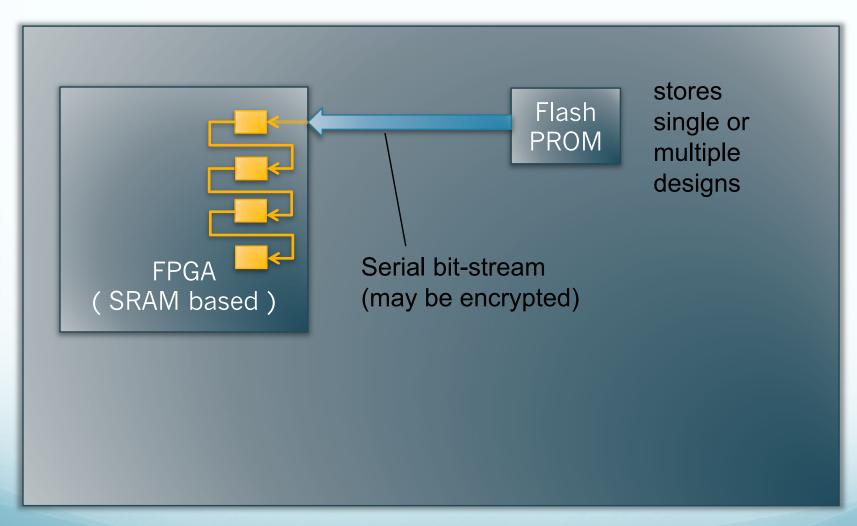
Multi-transistor SRAM cell


Programming a 3-bit wide LUT

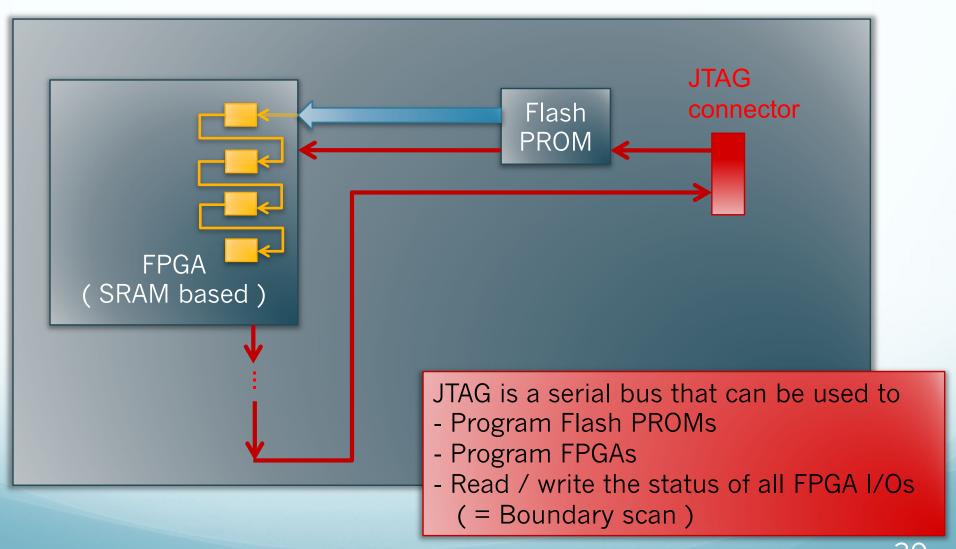


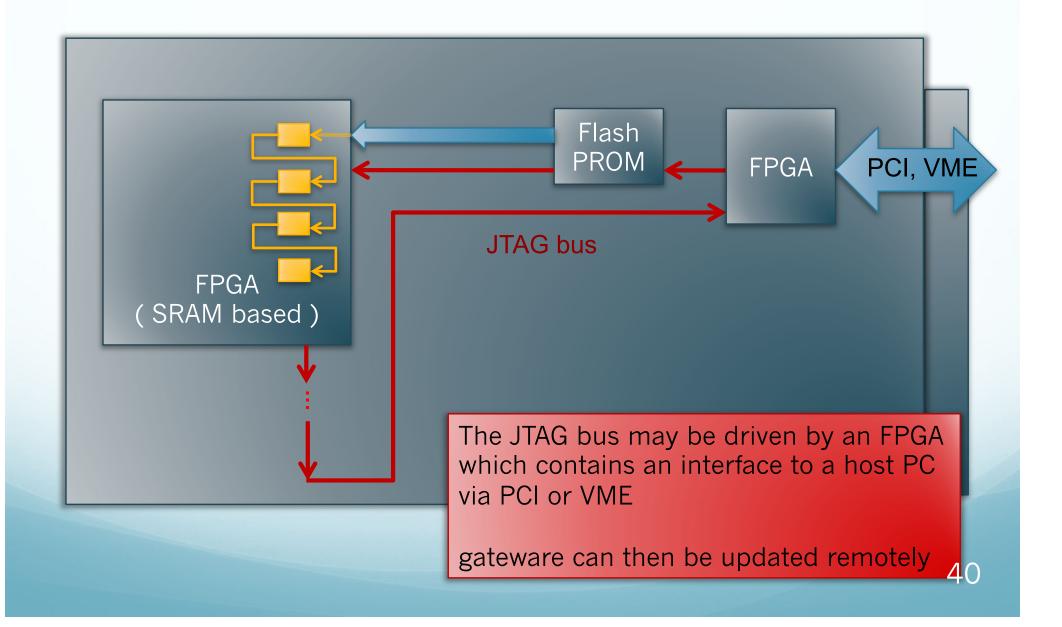
Summary of Technologies


Technology	Symbol	Predominantly associated with	
Fusible-link		SPLDs	
Antifuse		FPGAs	
EPROM	一片	SPLDs and CPLDs	
E ² PROM/ FLASH	一片	SPLDs, CPLDs, and FPGAs	
SRAM	SRAM	FPGAs (some CPLDs)	



Design Considerations (SRAM Config.)


Configuration at power-up


Typical FPGA configuration time: milliseconds

Programming via JTAG

Joint Test Action Group

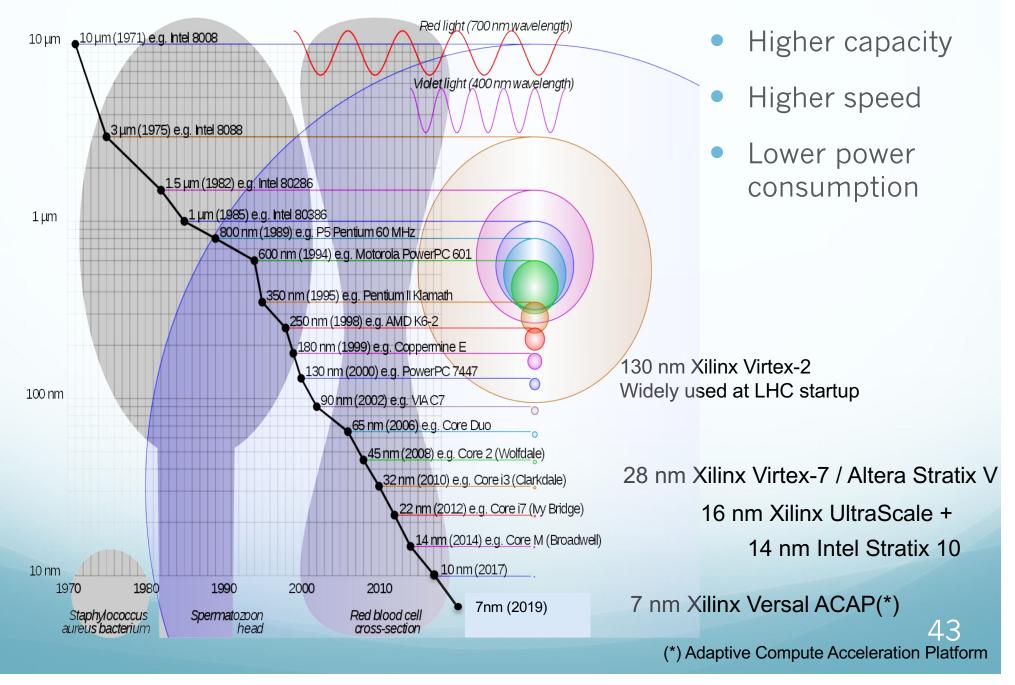
Remote programming

Major Manufacturers

Xilinx

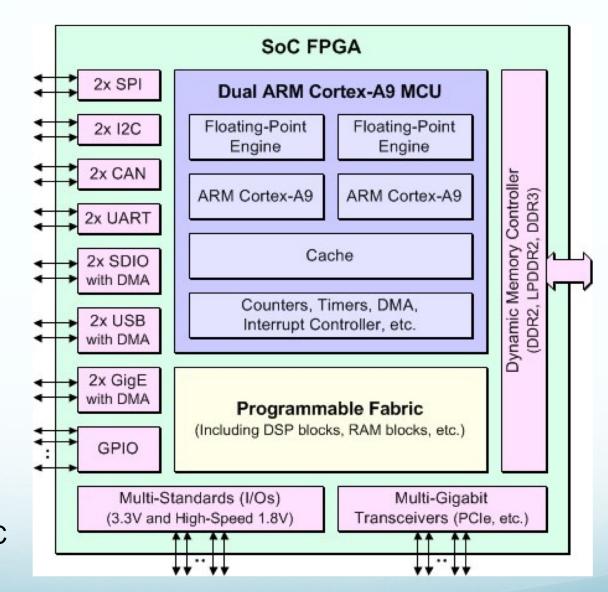
- **EX** XILINX.
- First company to produce FPGAs in 1985
- About 55% market share, today
- SRAM based CMOS devices
- Intel FPGA (formerly Altera)
 - About 35% market share
 - SRAM based CMOS devices

- Microsemi (Actel)
 - Anti-fuse FPGAs
 - Flash based FPGAs
 - Mixed Signal



- Lattice Semiconductor
 - SRAM based with integrated Flash PROM
 - low power

Trends


Ever-decreasing feature size

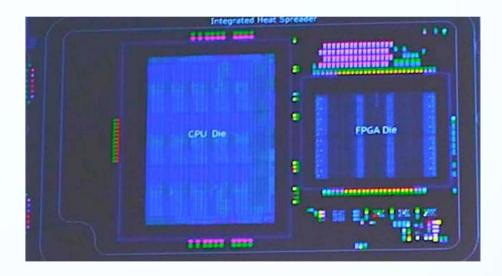
Trends

- Speed of logic increasing
- Look-up-tables with more inputs (5 or 6)
- Speed of serial links increasing (multiple Gb/s)
- More integrated memory
 - Integrated High Bandwidth Memory (HBM) in-package
 - 10x faster than DDR4 (Xilinx: up to 8 GB, Intel: up to 16GB)
- Additional Flip Flops in routing resources (Intel hyperflex)
- More and more hard macro cores on the FPGA
 - PCI Express
 - Gen2: 5 Gb/s per lane
 - Gen3: 8 Gb/s per lane (typically up to 16 lanes)
 - Gen4: 16 Gb/s per lane
 - 10 Gb/s, 40 Gb/s, 100 Gb/s Ethernet, 150 Gb/s Interlaken
- Sophisticated soft macros
 - CPUs
 - Gb/s MACs
 - Memory interfaces (DDR2/3/4)

System-On-a-Chip (SoC) FPGAs

Xlinix Zynq

Intel Stratix 10 SoC


CPU(s) + Peripherals + FPGA in one package

FPGAs in Server Processors and the Cloud

Released 2018: Intel Xeon Server Processor with FPGA

in socket

Intel acquired
 Altera in 2015

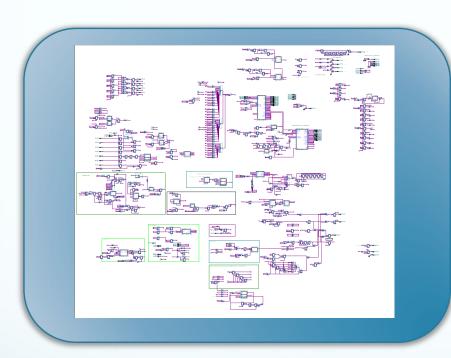
- See: https://www.eejournal.com/article/intel-delivers-xeon-scalable-processor-6138p-with-arria-10-gx-1150-fpga/
- FPGAs in the cloud
 - Amazon Elastic Cloud F1 instances
 - 8 CPUs / 1 Xilinx UltraScale+ FPGA
 - 64 CPUs / 8 Xilinx UltraScale+ FPGA

FPGA – ASIC comparison

FPGA

- Rapid development cycle (minutes / hours)
- May be reprogrammed in the field (gateware upgrade)
 - New features
 - Bug fixes
- Low development cost
 - You can get started with a development board (< \$100) and free software
- High-end FPGAs rather expensive

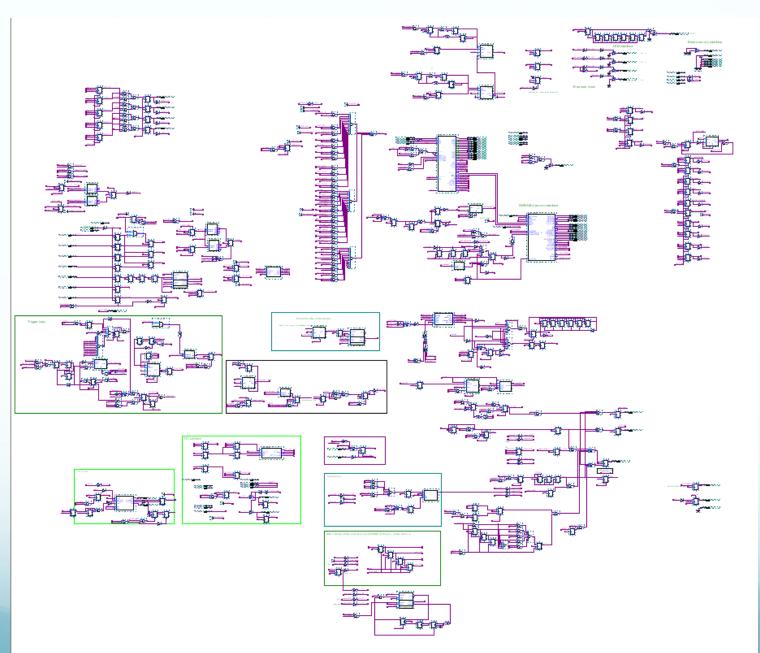
ASIC


- Higher performance
 - Speed, Area, Power
- Analog designs possible
- Better radiation hardness
- Long development cycle (weeks / months)
- Design cannot be changed once it is produced
- Extremely high development cost
 - ASICs are produced at a semiconductor fabrication facility ("fab") according to your design
- Lower cost per device compared to FPGA, when large quantities are needed

FPGA development

Design entry

Schematics


- Graphical overview
- Can draw entire design
- Use pre-defined blocks

Hardware description language VHDL, Verilog

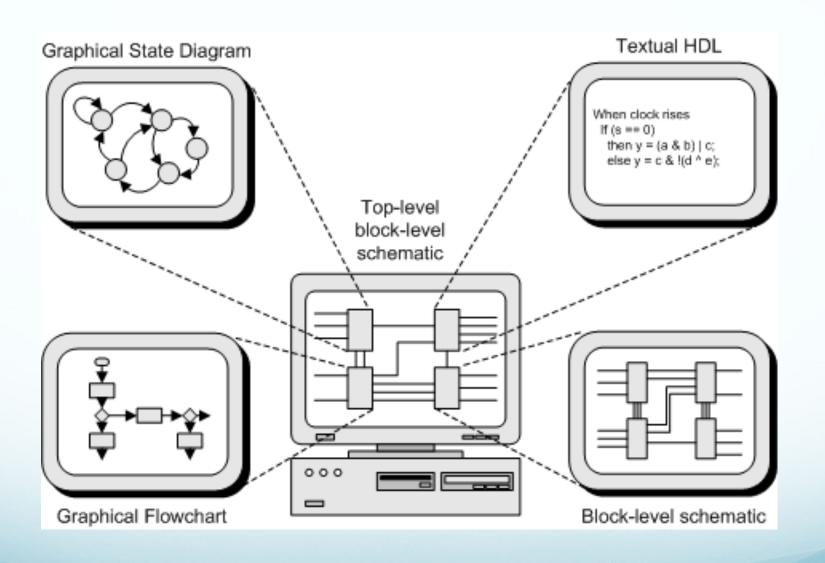
- Can generate blocks using loops
- Can synthesize algorithms
- Independent of design tool
- May use tools used in SW development (SVN, git ...)

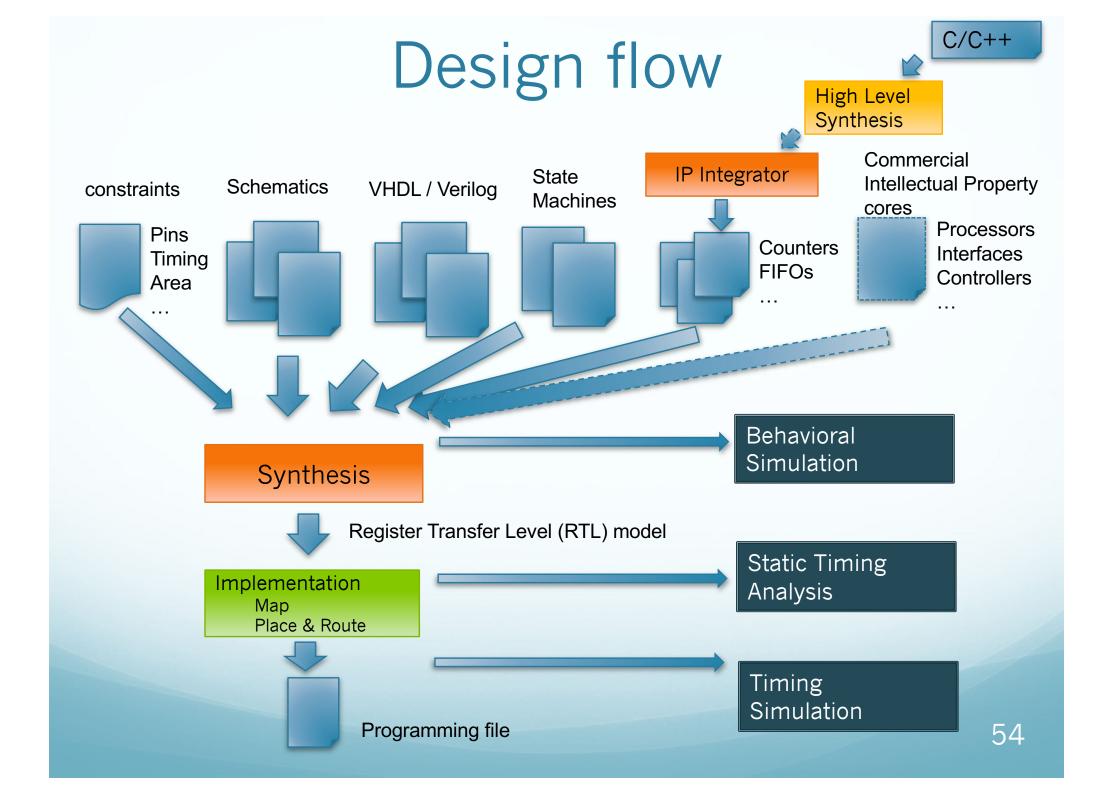
Mostly a personal choice depending on previous experience9

Schematics

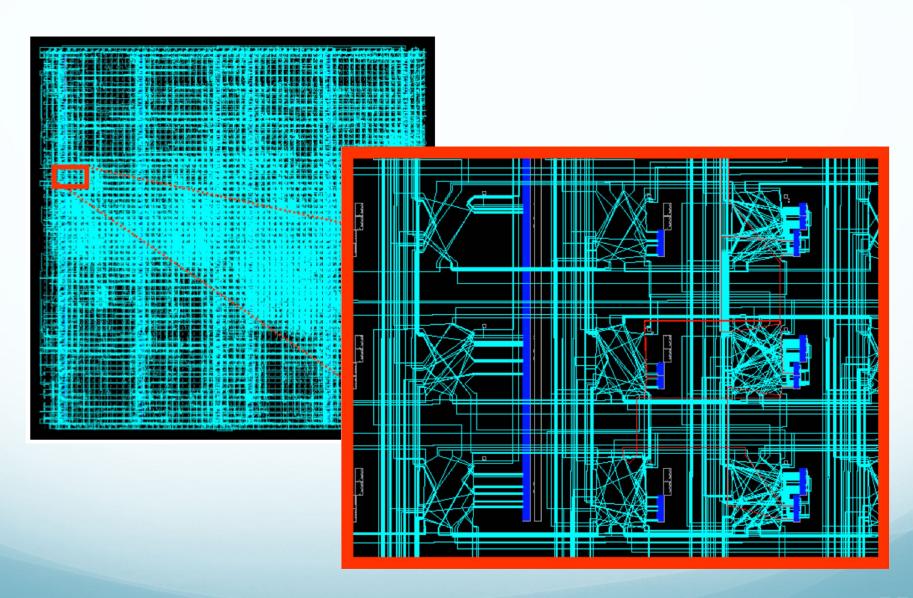
Hardware Description Language

- Looks similar to a programming language
 - BUT be aware of the difference
 - Programming Language => translated into machine instructions that are executed by a CPU
 - HDL => translated into gateware (logic gates & flip-flops)
- Common HDLs
 - VHDL
 - Verilog
 - AHDL (Altera specific)
- Newer trends
 - C-like languages (handle-C, System C)
 - Labview
 - High Level Synthesis (HLS) from C/C++

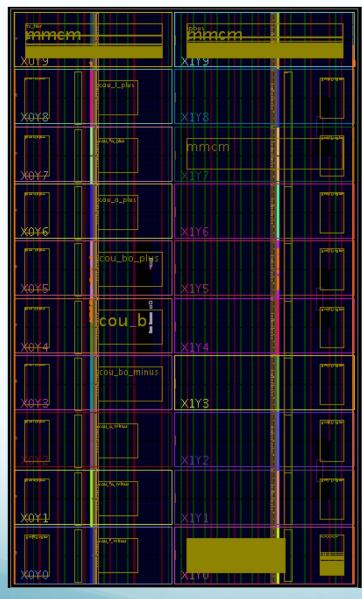

Example: VHDL

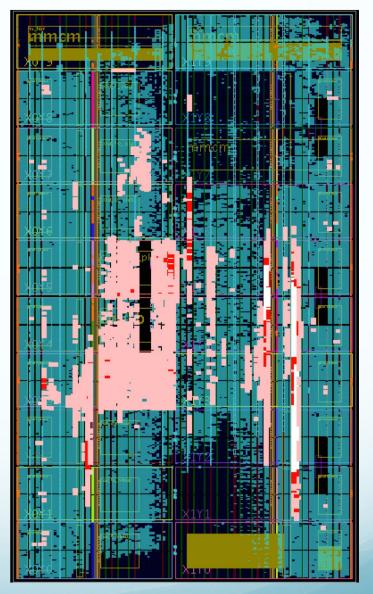

```
architecture behavioral of VMEReg is
  signal vme_en_i : std_logic;
  signal 0 : std_logic_vector(15 downto 0);
                                                Asynchronous logic
begin -- behavioral
                                                All signals in sensitivity list
  vme_addr_decode : process (vme_addr, vme_en) is
    variable my_addr_vec : std_logic_vector(vme_addr'high downto 0);
   variable selected : boolean:
  begin -- process vme_addr_decode
    my_addr_vec := std_logic_vector( TO_UNSIGNED ( my_vme_base_address, vme_addr'high+1 ) );
                := my_addr_vec(vme_addr'high downto 1) = vme_addr(vme_addr'high downto 1);
   vme_en_i <= '0';</pre>
   if selected then
     vme_en_i <= vme_en;</pre>
    end if;
  end process vme_addr_decode;
                                     Synchronous logic
                                     Only clock (and reset) in sensitivity list
  reg: process (vme_clk, reset) is
  begin -- process reg
   if reset = '1' then
                                        -- asynchronous reset
        Q <= init_val;</pre>
        vme_en_out <= '0';</pre>
    elsif vme_clk'event and vme_clk = '1' then -- rising clock edge
      vme_en_out <= vme_en_i;</pre>
     if vme_en_i = '1' and vme_wr = '1' then
        0 <= vme_data;</pre>
     end if:
    end if:
  end process reg;
  data <= 0;
  vme_data_out <= Q;
end behavioral;
```

Looks like a programming language

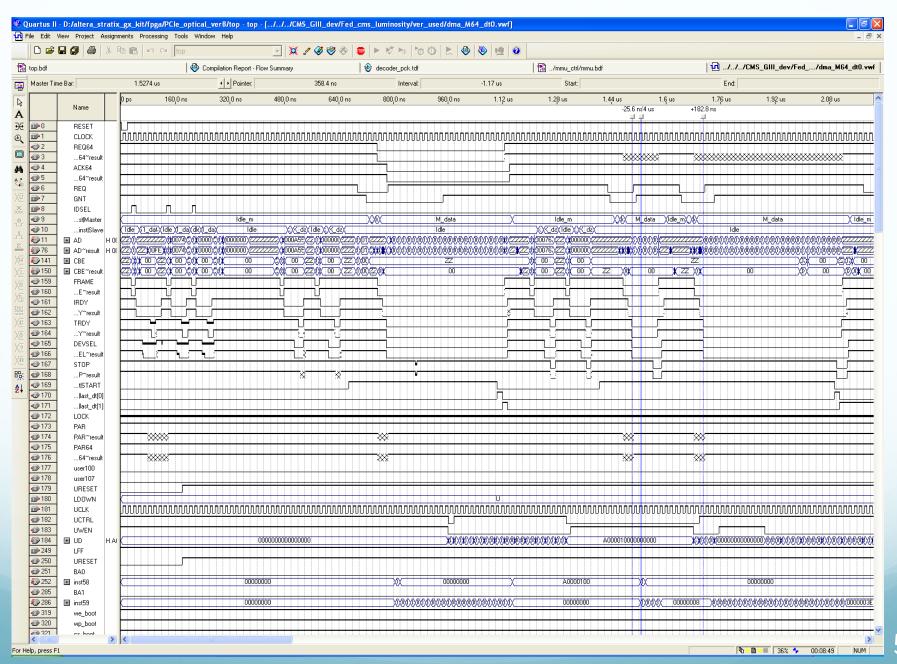

All statements
 executed in parallel, except inside processes

Schematics & HDL combined

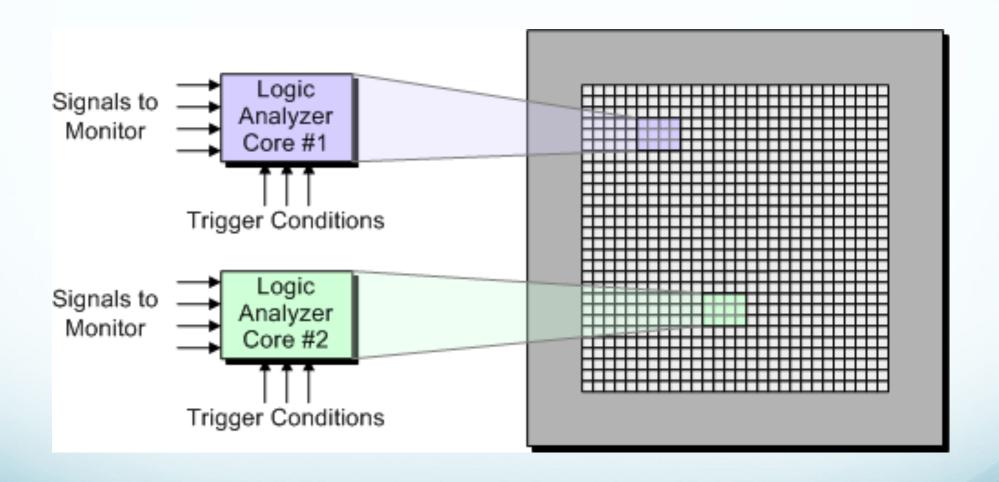



Floorplan (Xlinx Virtex 2)

Manual Floor planning

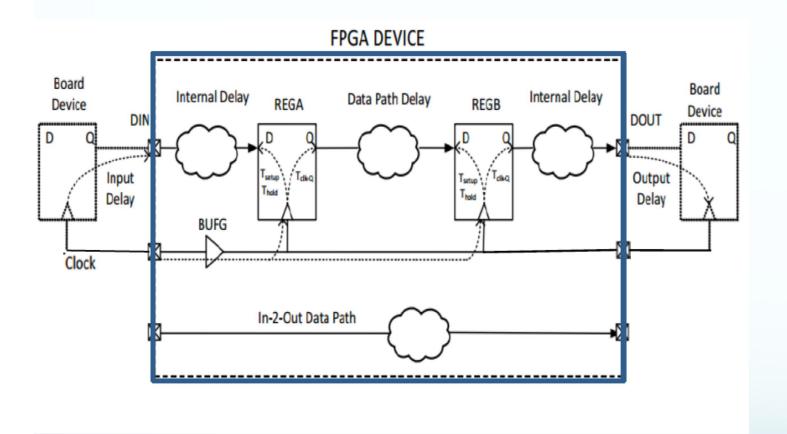


For large designs, manual floor planning may be necessary

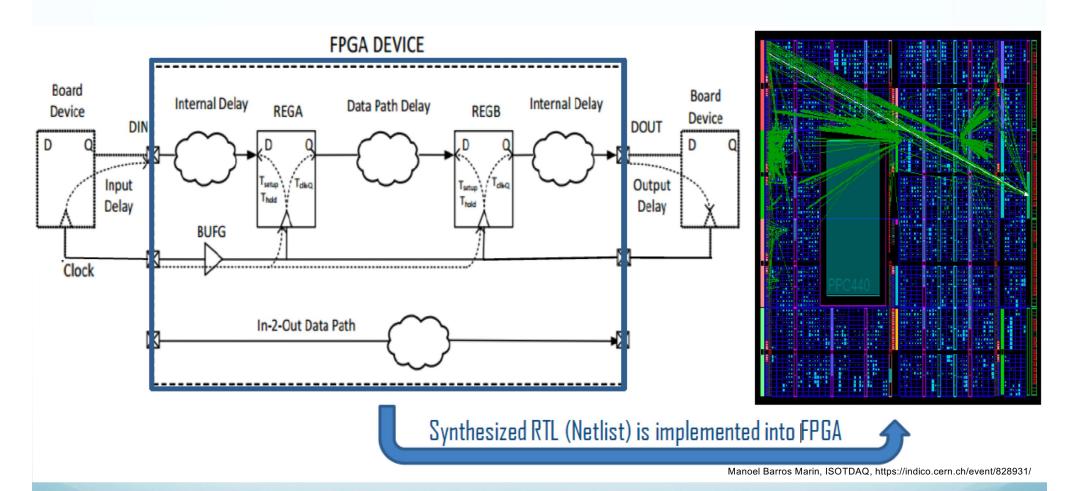


Routing congestion
Xilinx Virtex 7 (Vivado)

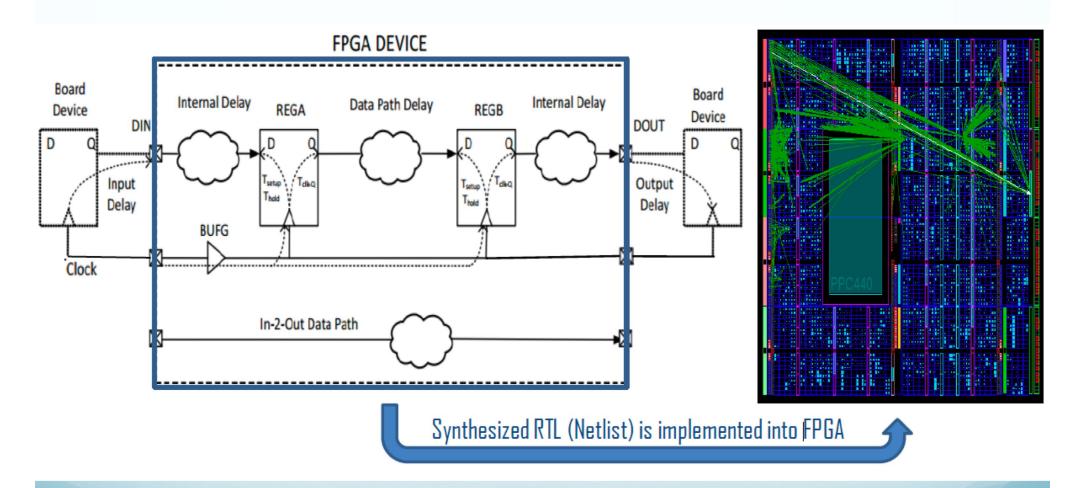
Simulation



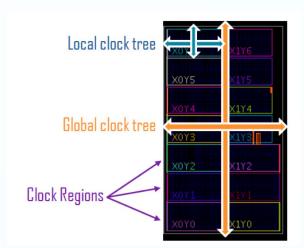
Embedded Logic Analyzers



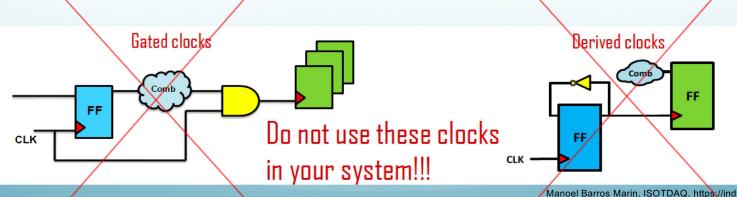
A great tool for debugging your design


Timing in FPGA design is critical

Timing in FPGA design is critical

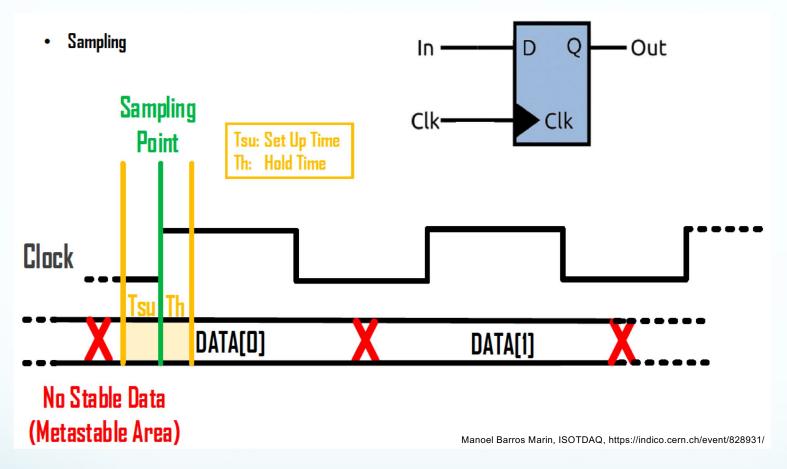


Timing in FPGA design is critical



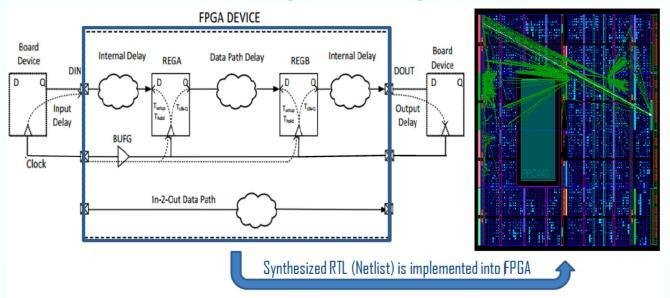
- If signals do not arrive at destination on time
- Catastrophic consequences

- Always use dedicated clock networks to distribute clocks
 - Assures that clock is seen at all FFs at same time
 - Other clocking resources
 - Clock capable pins
 - Clock buffers
 - Clock Multiplexers
 - Phase Locked Loops
 - Digital Clock Managers



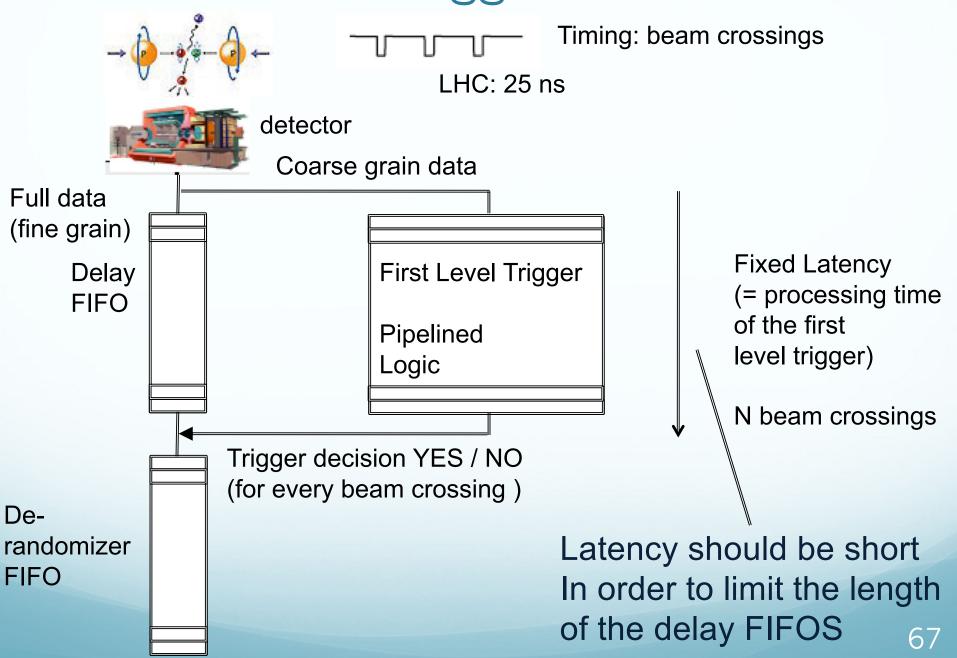
Do not gate or derive clocks

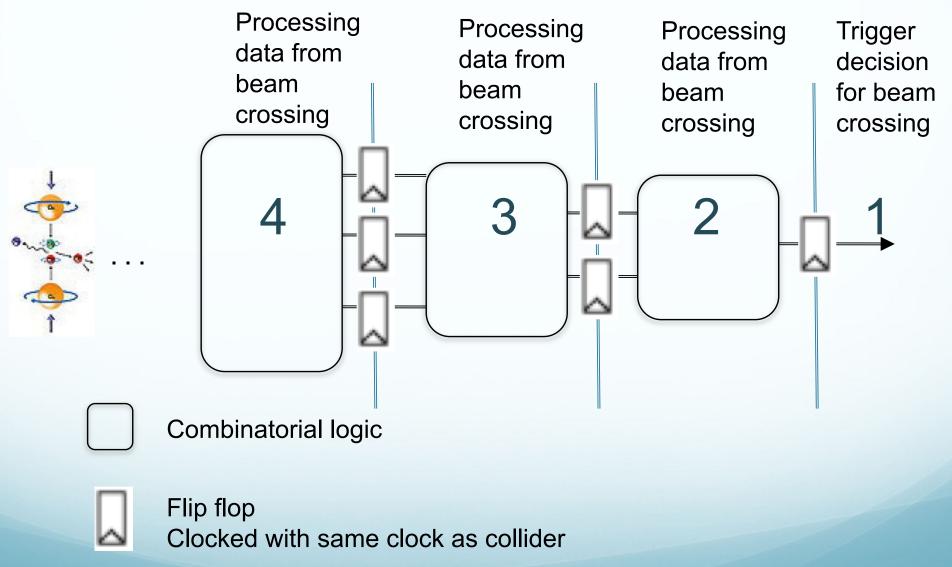
Manoel Barros Marin, ISOTDAQ, https://indico.cern.ch/event/828931/


Data paths must respect setup and hold times

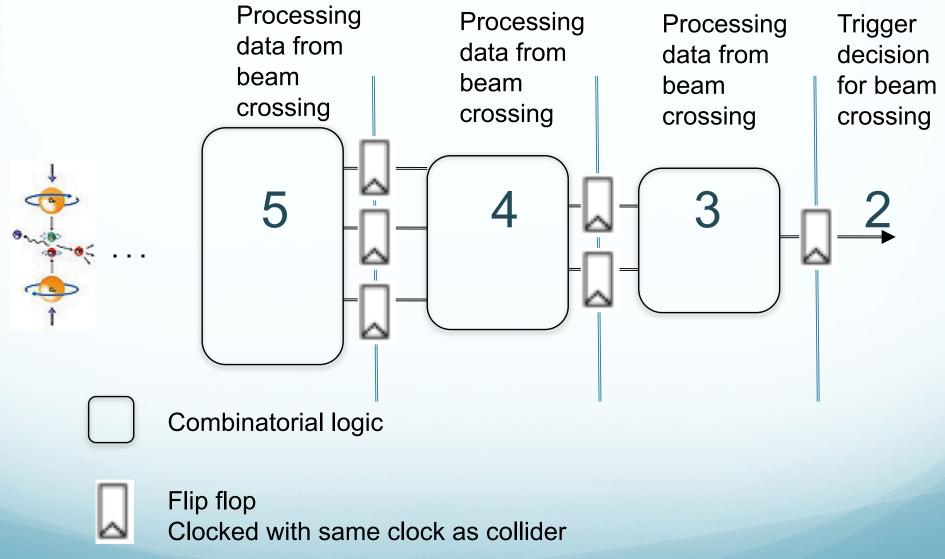
Setup time is the amount of time required for the input to a Flip-Flop to be stable before a clock edge. Hold time is similar to setup time, but it deals with events after a clock edge occurs.

64


Meeting timing closure


- Place & route step will try to position registers (flip-flops) and logic so that data path delays respect setup and hold times
- Options to meet timing
 - Instruct Place & route to use higher effort level
 - Add register stages & reduce amount of logic in data path (increases latency)
 - Choose location of inputs and outputs (at board design, or through optical patch panel)
 - Placement (area) constraints (give hints to the place & route step)
- Good practice
 - Whenever possible use I/O flip –flops (i.e FFs inside input/output cells)
 Ensures timing with respect to external components is respected

FPGA applications in the Trigger & DAQ domain


First-Level Trigger at Collider

Pipelined Logic

Pipelined Logic – a clock cycle later

Why are FPGAs ideal for First-Level Triggers?

- They are fast
 - Much faster than discrete electronics (shorter connections)
- Many inputs
 - Data from many parts of the detector has to be combined

- All operations are performed in parallel
 - Can build pipelined logic
- They can be re-programmed
 - Trigger algorithms can be optimized

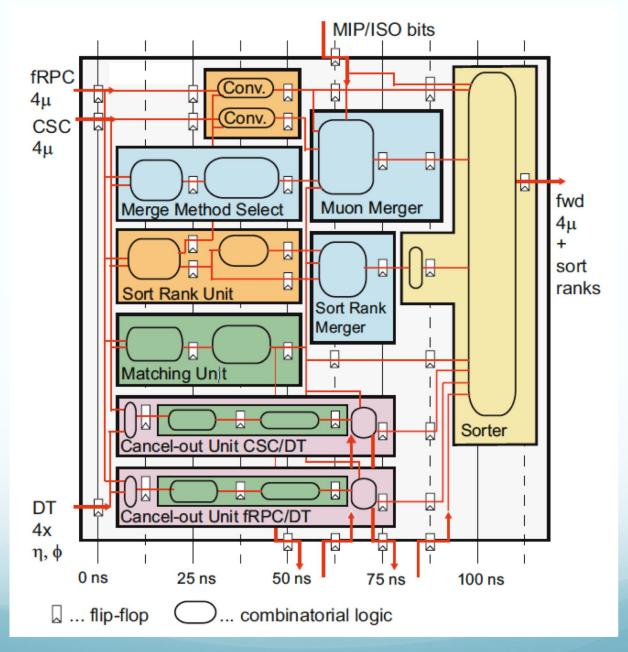
Low latency

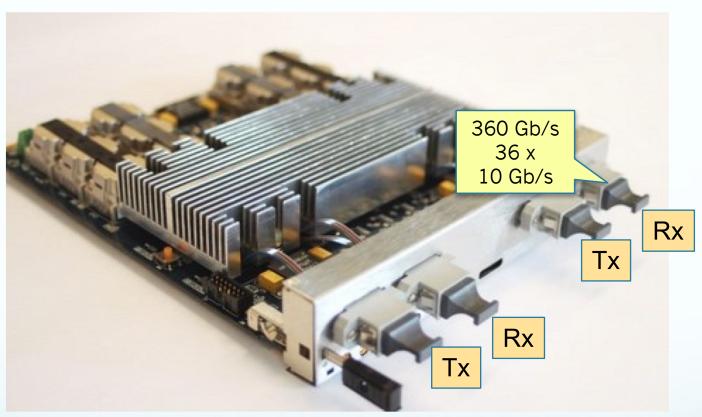
High performance

Trigger algorithms implemented in FPGAs

- Peak finding
- Pattern Recognition
- Track Finding
- Clustering / Energy summing
- Sorting
- Topological Algorithms (invariant mass)
- Trigger Control system
- Fast signal merging
- New: Inference with Neural Networks

Many more ...

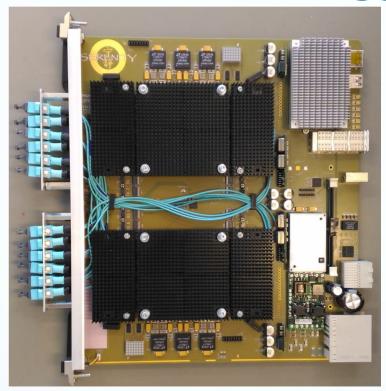

CMS Global Muon Trigger

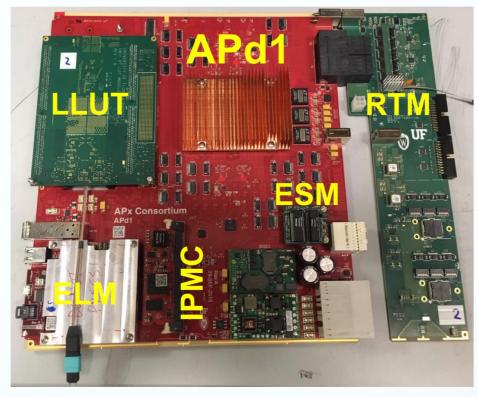

- The CMS Global Muon trigger received 16 muon candidates from the three muon systems of CMS
 - It merged different measurements for the same muon and found the best 4 over-all muon candidates

- Input: ~1000 bits@ 40 and 80 MHz
- Output: ~50 bits @ 80MHz
- Processing time: 250 ns
- Pipelined logic one new result every 25 ns
- 10 Xilinx Virtex-II FPGAs
- up to 500 user I/Os per chip
- Up to 25000 LUTs per chip used
- Up to 96 x 18kbit RAM used
- In use in the CMS trigger 2008-2015

CMS Global Muon Trigger main FPGA

μTCA board for Run 2&3 CMS trigger based on Virtex 7

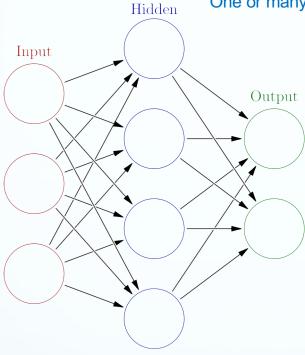

MP7, Imperial College


Virtex 7 with 690k logic cells
80 x 10 Gb/s transceivers bi-directional
72 of them as optical links on front panel
0.75 + 0.75 Tb/s
Being used in the CMS trigger since 2015

Input/output: up to 14k bits per 40 MHz clock

Same board used for different functions (different gateware)
Separation of framework + algorithm fw

CMS ATCA Trigger boards for HL-LHC


Serenity, UK

APX, US

- Few types of generic boards, ATCA standard
- Xilinx Virtex/Kintex Ultrascale+ FPGAs
- 25-28 Gb/s optical links
- SoC FPGAs used for board control (on some boards)
- Advanced firmware algorithms
 - Vertex finding
 - Particle flow
 - Neural network classifiers

Neural Networks in Trigger

One or many hidden layers

By Glosser.ca - Own work, Derivative of File:Artificial neural network.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=24913461

Principle

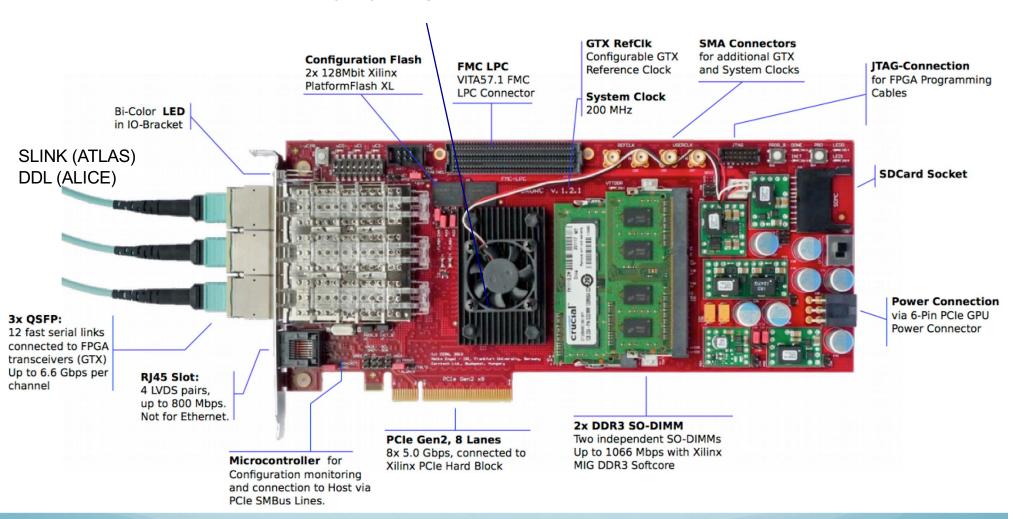
- Node is assigned a value based on the weighted sum of nodes in the previous layer
- Maps well to DSP resources in FPGA (multiplier + adder)

Applications:

- Jet classification
- Assignment of transverse momentum based on many measurements
- ...

Tools

- Many commercial tools
- hls4ml (optimized for latency)
 - Firmware generation from high-level model using Vivado HLS

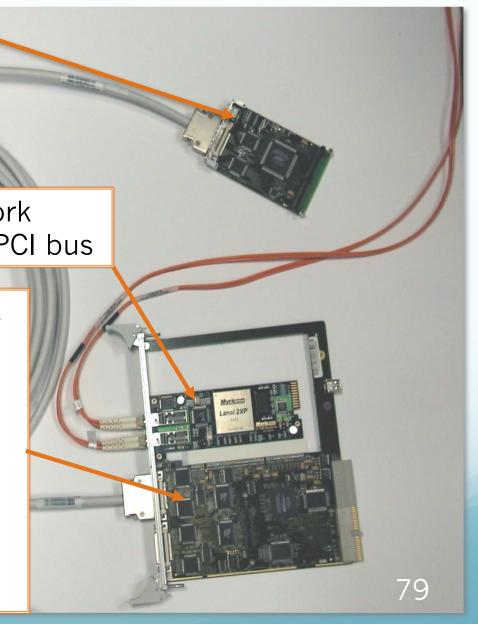


FPGAs in Data Acquisition

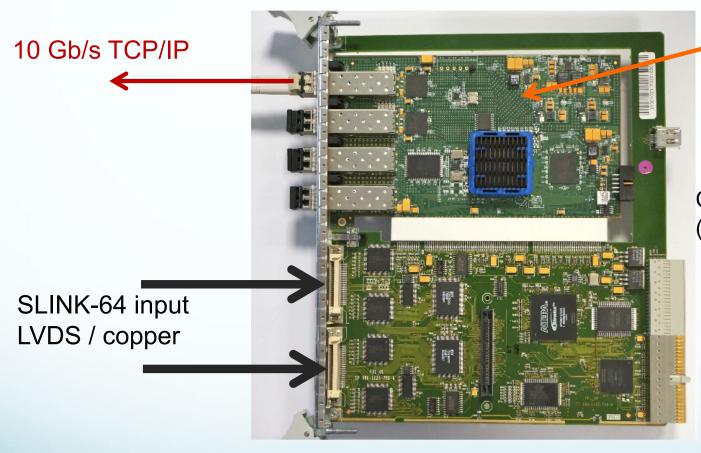
- Frontend Electronics
 - Pedestal subtraction
 - Zero suppression
 - Compression
 - ...
- Custom data links
 - E.g. SLINK-64 over copper
 - Several serial LVDS links in parallel
 - Up to 400 MB/s
 - SLINK/SLINK-express over optical
- Interface from custom hardware to commercial electronics
 - PCI/PCIe, VME bus, Myrinet, 10/40/100 Gb/s Ethernet etc.

C-RORC (Alice) / Robin NP (ATLAS) for Run-2

Xilinx Virtex-6 FPGA



CMS Front-end Readout Link (Run-1)


- SLINK Sender Mezzanine Card: 400 MB / s
 - 1 FPGA (Altera)
 - CRC check
 - Automatic link test

Commercial Myrinet Network Interface Card on internal PCI bus

- Front-end Readout Link Card
 - 1 main FPGA (Altera)
 - 1 FPGA as PCI interface
 - Custom Compact PCI card
 - Receives 1 or 2 SLINK64
 - 2nd CRC check
 - Monitoring, Histogramming
 - Event spy

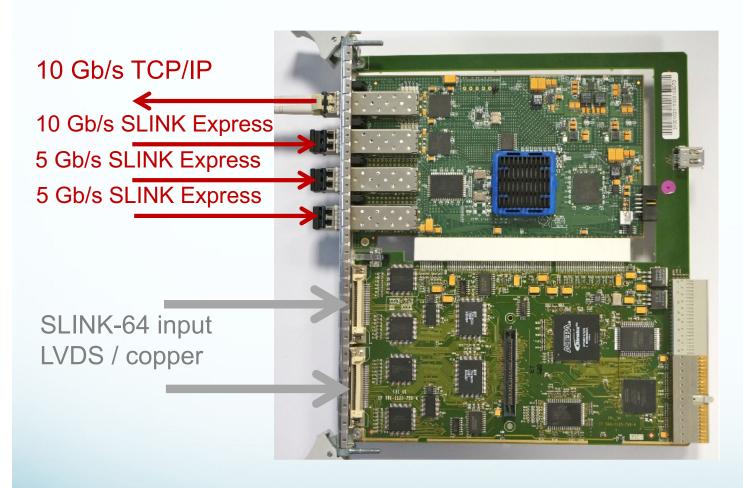
CMS Readout Link for Run-2 in use since 2015

Myrinet NIC replaced by custom-built card ("FEROL")

Cost effective solution
(need many boards)
Rather inexpensive FPGA
+ commercial chip to combine
3 Gb/s links to 10 Gb/s

FEROL (Front End Readout Optical Link)

Input: 1x or 2x SLINK (copper)


1x or 2x 5Gb/s optical

1x 10Gb/s optical

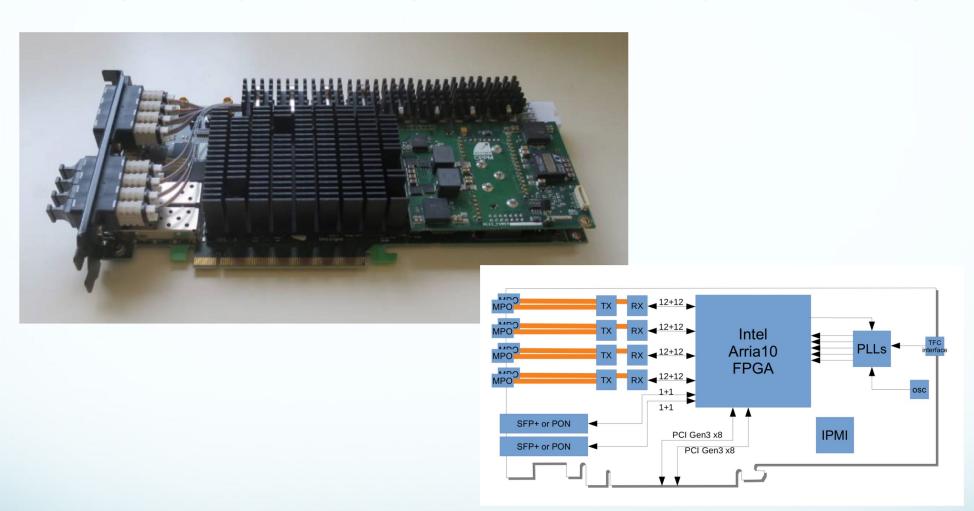
Output: 10 Gb/s Ethernet optical

TCP/IP sender in FPGA

CMS Readout Link for Run-2

FEROL (Front End Readout Optical Link)

Input: 1x or 2x SLINK (copper)


1x or 2x 5Gb/s optical

1x 10Gb/s optical

Output: 10 Gb/s Ethernet optical

TCP/IP sender in FPGA

PCIe40 – LHCb and ALICE Run-3

- 48 bidirectional links running at up to 10 Gbits/s each (minipods)
- 2 bidirectional links running at up to 10 Gbits/s devoted to time distribution (can use SFP+ or 10G PON devices)
- o Sustained 112 Gbits/s interface with CPU through PCIe

CMS DTH (DAQ and Timing Hub) for HL-LHC

DTH prototype 1

- ATCA board using Xilinx Virtex Ultrascale + FPGAs
- Several DAQ units per board
 Each unit receiving optical inputs at 16 Gb/s and 25 Gb/s
 4x 100 Gb/s Ethernet to commercial network (4 links of 25Gb/s)
 TCP/IP in FPGA

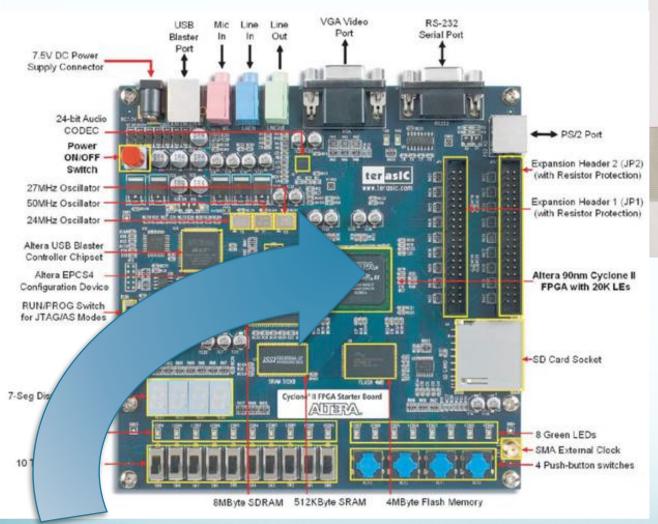
Board distributes timing and control

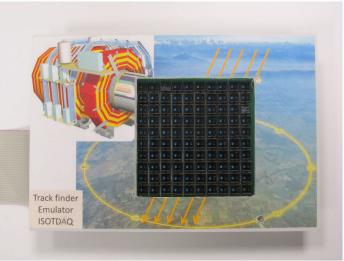
Board contains switch for control network

FPGAs in other domains

- Medical imaging
- Advanced Driver Assistance Systems (Image Processing)
- Speech recognition
- Cryptography
- Bioinformatics (Genome sequencing)
- Aerospace / Defense
- (Bitcoin mining)
- 5G Wireless

- ASIC Prototyping
- Compute accelerators
 - Accelerator cards





- Server processors w. FPGA
- Financial
- Inferencing
- Video transcoding

8

Lab Session 5: Programming an FPGA

At the annual ISOTDAQ school

https://isotdag-schools.web.cern.ch/

You are going to design the digital electronics inside this FPGA!

Lab Session 13: System-on-a-chip FPGA

At the annual ISOTDAQ school

https://isotdag-schools.web.cern.ch/

Z-turn board Zynq w. dual-core ARM

Design the digital electronics and software in this SoC FPGA!

Virtex[®] UltraScale+™ FPGAs

Top-of-the-line Xilinx devices

		Device Name	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU27P	VU29P	VU31P	VU33P	VU35P	VU37P
	System	Logic Cells (K)	862	1,314	1,724	2,586	2,835	3,780	2,835	3,780	962	962	1,907	2,852
	CLB	Flip-Flops (K)	788	1,201	1,576	2,364	2,592	3,456	2,592	3,456	879	879	1,743	2,607
		CLB LUTs (K)	394	601	788	1,182	1,296	1,728	1,296	1,728	440	440	872	1,304
	Max. Di	st. RAM (Mb)	12.0	18.3	24.1	36.1	36.2	48.3	36.2	48.3	12.5	12.5	24.6	36.7
	Total Blo	ck RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5	70.9	94.5	23.6	23.6	47.3	70.9
	Ul	traRAM (Mb)	90.0	132.2	180.0	270.0	270.0	360.0	270.0	360.0	90.0	90.0	180.0	270.0
	HBI	M DRAM (GB)	-	-	-	-	-	-	_	-	4	8	8	8
	HBM /	AXI Interfaces	-	-	-	-	_	-	_	-	32	32	32	32
	Clock Mgm	t Tiles (CMTs)	10	20	20	30	12	16	16	16	4	4	8	12
		DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	9,216	12,288	2,880	2,880	5,952	9,024
	Peak INT	B DSP (TOP/s)	7.1	10.8	14.2	21.3	28.7	38.3	28.7	38.3	8.9	8.9	18.6	28.1
	PC	le® Gen3 x16	2	4	4	6	3	4	1	1	0	0	1	2
PCle	Gen3 x16/Ge	n4 x8 / CCIX ⁽¹⁾	-	-	-	-	-	-	-	-	4	4	4	4
	15	0G Interlaken	3	4	6	9	6	8	6	8	0	0	2	4
10	00G Ethernet w	// KR4 RS-FEC	3	4	6	9	9	12	11	15	2	2	5	8
	Max. Single-E	nded HP I/Os	520	832	832	832	624	832	520	676	208	208	416	624
(GTY 32.75Gb/s	Transceivers	40	80	80	120	96	128	32	32	32	32	64	96
GTM	58Gb/s PAM4	Transceivers							32	48				
	100G /	50G KP4 FEC							16/32	24 / 48				
		Extended ⁽²⁾	-1 -2 -2L -3											
		Industrial	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-	·-	-	_
F	ootprint(3,4,5)	Dim. (mm)			HP I/0	O, GTY			HP I/O, G	STY, GTM		HP I/C), GTY	
	C1517	40x40	520, 40											
ier	F1924 ⁽⁶⁾	45x45					624, 64							
entif	A2104	47.5x47.5		832, 52	832,52	832, 52								
nm nt ide		52.5x52.5 ⁽⁷⁾						832, 52						
th 20 otpri	B2104	47.5x47.5		702, 76	702, 76	702, 76	572, 76							
e wi		52.5x52.5 ⁽⁷⁾						702, 76						
atibl	C2104	47.5x47.5		416, 80	416,80	416, 104	416, 96							
omp		52.5x52.5 ⁽⁷⁾						416, 104						
int c	D2104	47.5x47.5				676, 76	572, 76							
ootpi		52.5x52.5 ⁽⁷⁾						676, 76		676, 16, 30				
Fc Scale	A2577	52.5x52.5				448, 120	448, 96	448, 128	448, 32, 48	448, 32, 48				
Footprint compatible with 20nm UltraScale Devices with same footprint identifier	H1924	45x45									208, 32			
7	H2104	47.5x47.5										208, 32	416, 64	
	H2892	55x55											416, 64	624, 96

Intel Stratix 10

INTEL° STRATIX° 10 GX/SX PRODUCT TABLE

PRO	DUCT LINE	GX 400 SX 400	GX 650 SX 650	GX 850 SX 850	GX 1100 SX 1100	GX 1650 SX 1650	GX 2100 SX 2100	GX 2500 SX 2500	GX 2800 SX 2800	GX 4500 SX 4500	GX 5500 SX 5500
	Logic elements (LEs) ¹	378,000	612,000	841,000	1,092,000	1,624,000	2,005,000	2,422,000	2,753,000	4,463,000	5,510,000
	Adaptive logic modules (ALMs)	128,160	207,360	284,960	370,080	550,540	679,680	821,150	933,120	1,512,820	1,867,680
	ALM registers	512,640	829,440	1,139,840	1,480,320	2,202,160	2,718,720	3,284,600	3,732,480	6,051,280	7,470,720
	Hyper-Registers from Intel® HyperFlex™ FPGA architecture				Millions of Hyper-Re	egisters distributed	throughout the mon	olithic FPGA fabric			
ın	Programmable clock trees synthesizable					Hundreds of synthe	sizable clock trees				
Resources	M20K memory blocks	1,537	2,489	3,477	4,401	5,851	6,501	9,963	11,721	7,033	7,033
esor	M20K memory size (Mb)	30	49	68	86	114	127	195	229	137	137
œ	MLAB memory size (Mb)	2	3	4	6	8	11	13	15	23	29
	Variable-precision digital signal processing (DSP) blocks	648	1,152	2,016	2,520	3,145	3,744	5,011	5,760	1,980	1,980
	18 x 19 multipliers	1,296	2,304	4,032	5,040	6,290	7,488	10,022	11,520	3,960	3,960
	Peak fixed-point performance (TMACS) ²	2.6	4.6	8.1	10.1	12.6	15.0	20.0	23.0	7.9	7.9
	Peak floating-point performance (TFLOPS) ³	1.0	1.8	3.2	4.0	5.0	6.0	8.0	9.2	3.2	3.2
	Secure device manager	AE	S-256/SHA-256 bitsr	eam encryption/aut	hentication, physical	ly unclonable functi	on (PUF), ECDSA 25	6/384 boot code au	thentication, side ch	annel attack protecti	on
nres	Hard processor system ⁴ Quad-core 64 bit ARM* Cortex*-A53 up to 1.5 GHz with 32 KB I/D cache, NEON* coprocessor, 1 MB L2 cache, direct memory access (DMA), system memory management unit, cache coherency uni hard memory controllers, USB 2.0 x2, 1G EMAC x3, UART x2, SPI x4, I ² C x5, general-purpose timers x7, watchdog timer x4										
Featur	Maximum user I/O pins	392	400	736	736	704	704	1160	1160	1640	1640
Irai	Maximum LVDS pairs 1.6 Gbps (RX or TX)	192	192	360	360	336	336	576	576	816	816
tect	Total full duplex transceiver count	24	48	48	48	96	96	96	96	24	24
Architectu	GXT full duplex transceiver count (up to 30 Gbps)	16	32	32	32	64	64	64	64	16	16
	GX full duplex transceiver count (up to 17.4 Gbps)	8	16	16	16	32	32	32	32	8	8
I/O and	PCI Express* (PCIe*) hard intellectual property (IP) blocks (Gen3 x16)	1	2	2	2	4	4	4	4	1	1
	Memory devices supported				DDR4, DDR3, DDR2	DDR, QDR II, QDR II	+, RLDRAM II, RLDR	AM 3, HMC, MoSys			
ack	age Options and I/O Pins: General-Purpose I/O (GPIO) Count,	High-Voltage I/O Co	unt, LVDS Pairs, and	Transceiver Count⁵							
	52 pin mm x 35 mm, 1.0 mm pitch)	392,8,192,24	392,8,192,24	-	-	-	-	-	-	-	-
	60 pin 5 mm x 42.5 mm, 1.0 mm pitch)	-	400,16,192,48	-	-	-	-	-	-	-	-
	60 pin 5 mm x 42.5 mm, 1.0 mm pitch)	-	-	688,16,336,48	688,16,336,48	688,16,336,48	688,16,336,48	688,16,336,48	688,16,336,48	-	-
	12 pin 5 mm x 47.5 mm, 1.0 mm pitch)	-	-	736,16,360,48	736,16,360,48	-	-	-	-	-	-
	97 pin mm x 50 mm, 1.0 mm pitch)	-	-	-	-	704,32,336,96	704,32,336,96	704,32,336,96	704,32,336,96	-	_
	12 pin nm x 55 mm, 1.0 mm pitch)	_	_	_	_	_	_	1160,8,576,24	1160,8,576,24	1640,8,816,24	1547,8,016

Intel Stratix 10

INTEL® STRATIX® 10 TX PRODUCT TABLE

PRO	DDUCT LINE	TX 1	650	TX	2100		TX 2500			TX 2800						
	Logic elements (LEs) ¹	1,679	,000	2,07	3,000		2,422,000			2,753,000						
	Adaptive logic modules (ALMs)	569,	200	702,720		821,150			933,120							
	ALM registers	2,276	,800	2,81	0,880		3,284,600		3,732,480							
	Hyper-Registers from Intel® Hyperflex™ FPGA architecture			Millio	ns of Hyper-Reg	isters distributed t	hroughout the n	nonolithic FPGA	GA fabric							
	Programmable clock trees synthesizable				Н	undreds of synthe	sizable clock tre	es								
S	eSRAM memory blocks	2			2		-		_							
ırce	eSRAM memory size (Mb)	90)	g	10		-			-						
esol	M20K memory blocks	6,1	62	6,8	347		9,963			11,721						
2	M20K memory size (Mb)	12	0	1:	34		195			229						
	MLAB memory size (Mb)	9		1	1		13			15						
	Variable-precision digital signal processing (DSP) blocks	3,3	26	3,9	960		5,011		5,760							
	18 x 19 multipliers	6,6	52	7,9	920		10,022		11,520							
	Peak fixed-point performance (TMACS) ²	13	.3	1!	5.8		20.0		23.0							
	Peak floating-point performance (TFLOPS) ³	5.:	3	6	.3		8.0		9.2							
	Secure device manager	AES-256/SHA-2	56 bitsream encr	yption/authentic	ation, physically	unclonable functi	on (PUF), ECDSA	256/384 boot c	ode authentication	n, side channel at	tack protection					
	Hard processor system					B I/D cache, NEON ers, USB 2.0 x2, 1G										
S		-			_		Yes			Yes						
ture	Maximum user I/O pins	544	440	544	440	544	440	296	544	440	296					
Fea	Maximum LVDS pairs 1.6 Gbps (RX or TX)	264	216	264	216	264	216	144	264	216	144					
ural	Total full duplex transceiver count	72	96	72	96	72	96	144	72	96	144					
hitect	GXE transceiver count - PAM-4 (up to 58 Gbps) or NRZ (up to 30 Gbps)	12 PAM-4 24 NRZ	36 PAM-4 72 NRZ	12 PAM-4 24 NRZ	36 PAM-4 72 NRZ	12 PAM-4 24 NRZ	36 PAM-4 72 NRZ	60 PAM-4 120 NRZ	12 PAM-4 24 NRZ	36 PAM-4 72 NRZ	60 PAM-4 120 NRZ					
Arc	GXT transceiver count - NRZ (up to 28.3 Gbps)	32	16	32	16	32	16	16	32	16	16					
and	GX transceiver count - NRZ (up to 17.4 Gbps)	16	8	16	8	16	8	8	16	8	8					
9	PCI Express* (PCIe*) hard intellectual property (IP) blocks (Gen3 x16)	2	1	2	1	2	1	1	2	1	1					
	100G Ethernet MAC (no FEC) hard IP blocks	2	1	2	1	2	1	1	2	1	1					
	100G Ethernet MAC + FEC hard IP blocks	4	12	4	12	4	12	20	4	12	20					
	Memory devices supported			DDR4	I, DDR3, DDR2, D	DR, QDR II, QDR II	+. RLDRAM II. RL	DRAM 3. HMC. M	loSvs							

Package Options and I/O Pins: General-Purpose I/O (GPIO) Count, High-Voltage I/O count, LVDS pairs, GXE (E-Tile) Transceiver Count, and GXT+GX (H-Tile) Transceiver Count

F2112 pin (47.5 mm x 47.5 mm, 1.0 mm pitch)	544,16,264,24,48	544,16,264,24,48	544,16,264,24,48	544,16,264,24,48
F2397 pin (50 mm x 50 mm, 1.0 mm pitch)	440,8,216,72,24	440,8,216,72,24	440,8,216,72,24	440,8,216,72,24
F2912 pin (55 mm x 55 mm, 1.0 mm pitch)	-	-	296,8,144,120,24	296,8,144,120,24

Intel Stratix 10

INTEL® STRATIX® 10 MX (DRAM SYSTEM-IN-PACKAGE) PRODUCT TABLE

	DUCT LINE	MX 1100	MX 1650	MX 1650	MX 1650	MX 2100	MX 2100	MX 2100	MX 2100
	Logic elements (LEs) ¹	1,092,000	1,679,000	1,679,000	1,679,000	2,073,000	2,073,000	2,073,000	2,073,000
	Adaptive logic modules (ALMs)	370,080	569,200	569,200	569,200	702,720	702,720	702,720	702,720
	ALM registers	1,480,320	2,276,800	2,276,800	2,276,800	2,810,880	2,810,880	2,810,880	2,810,880
	Hyper-Registers from Intel® Hyperflex™ FPGA architecture			Millions of Hyper-Re	gisters distributed th	roughout the monol	ithic FPGA fabric		
	Programmable clock trees synthesizable			I	Hundreds of synthesi	zable clock trees			
	HBM2 high-bandwidth DRAM memory (GBytes)	3.25	8	16	8	8	8	16	8
ces	eSRAM memory blocks	1	2	2	2	2	2	2	2
kesources	eSRAM memory size (Mb)	45	90	90	90	90	90	90	90
Kes	M20K memory blocks	4,401	6,162	6,162	6,162	6,847	6,847	6,847	6,847
	M20K memory size (Mb)	86	120	120	120	134	134	134	134
	MLAB memory size (Mb)	6	9	9	9	11	11	11	11
	Variable-precision digital signal processing (DSP) blocks	2,520	3,326	3,326	3,326	3,960	3,960	3,960	3,960
	18 x 19 multipliers	5,040	6,652	6,652	6,652	7,920	7,920	7,920	7,920
	Peak fixed-point performance (TMACS) ²	10.1	13.3	13.3	13.3	15.8	15.8	15.8	15.8
	Peak floating-point performance (TFLOPS) ³	4.0	5.3	5.3	5.3	6.3	6.3	6.3	6.3
					KB I/D cache, NEON*				
	Hard processor system			erency unit, hard me	mory controllers, US	B 2.0 x2, 1G EMAC x	3, UART x2, serial p		
Ires	Hard processor system			erency unit, hard me		B 2.0 x2, 1G EMAC x	3, UART x2, serial p		
eatures	Hard processor system Maximum user I/O pins	manager		erency unit, hard me	mory controllers, US	B 2.0 x2, 1G EMAC x	3, UART x2, serial p	eripheral interface	
		manager Yes	nent unit, cache coh	erency unit, hard me I ² C x5, g –	mory controllers, US eneral-purpose time –	3 2.0 x2, 1G EMAC x rs x7, watchdog time –	3, UART x2, serial per x4	eripheral interface	(SPI) x4,
	Maximum user I/O pins	Manager Yes 448	nent unit, cache coh	erency unit, hard me I²C x5, g – 656	mory controllers, USI eneral-purpose time – 584	3 2.0 x2, 1G EMAC x. rs x7, watchdog time – 640	3, UART x2, serial p er x4 – 656	eripheral interface - 656	(SPI) x4, _ _ 584
	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX)	Yes 448 216	enent unit, cache con – 656 312	erency unit, hard me I ² C x5, g – 656 312	mory controllers, USI eneral-purpose time – 584 288	3 2.0 x2, 1G EMAC x. rs x7, watchdog time – 640 312	3, UART x2, serial p er x4 – 656 312	eripheral interface - 656 312	(SPI) x4, - 584 288
Arcilliectural	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX) Total full duplex transceiver count GXE transceiver count - PAM4 (up to 58 Gbps) or NRZ	Yes 448 216 48	enent unit, cache cohe - 656 312 96	erency unit, hard me I ² C x5, g - 656 312 96	mory controllers, USI eneral-purpose time - 584 288 96	3 2.0 x2, 1G EMAC x. rs x7, watchdog time - 640 312 48	3, UART x2, serial per x4 - 656 312	- 656 312 96	(SPI) x4, - 584 288 96
and Architectural	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX) Total full duplex transceiver count GXE transceiver count - PAM4 (up to 58 Gbps) or NRZ (up to 30 Gbps)	Yes 448 216 48	656 312 96	erency unit, hard me I ² C x5, g - 656 312 96	mory controllers, USI eneral-purpose time - 584 288 96 72	3 2.0 x2, 1G EMAC x. rs x7, watchdog time - 640 312 48	3, UART x2, serial per x4 - 656 312 96	- 656 312 96	(SPI) x4, - 584 288 96
and Architectural	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX) Total full duplex transceiver count GXE transceiver count - PAM4 (up to 58 Gbps) or NRZ (up to 30 Gbps) GXT transceiver count - NRZ (up to 28.3 Gbps)	Yes 448 216 48 0 32	- 656 312 96 0	erency unit, hard me I ² C x5, g - 656 312 96 0 64	mory controllers, USI eneral-purpose time - 584 288 96 72	3 2.0 x2, 1G EMAC x. rs x7, watchdog time - 640 312 48 0 32	3, UART x2, serial per x4 - 656 312 96 0 64	- 656 312 96 0	(SPI) x4, - 584 288 96 72 16
I/O and Architectural Features	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX) Total full duplex transceiver count GXE transceiver count - PAM4 (up to 58 Gbps) or NRZ (up to 30 Gbps) GXT transceiver count - NRZ (up to 28.3 Gbps) GX transceiver count - NRZ (up to 17.4 Gbps) PCI Express* (PCIe*) hard intellectual property (IP) blocks	Yes 448 216 48 0 32	- 656 312 96 0 64	erency unit, hard me 1°C x5, g - 656 312 96 0 64 32	mory controllers, USI eneral-purpose time - 584 288 96 72 16 8	3 2.0 x2, 1G EMAC x. rs x7, watchdog time - 640 312 48 0 32 16	3, UART x2, serial per x4 - 656 312 96 0 64 32	- 656 312 96 0 64 32	(SPI) x4, - 584 288 96 72 16 8
and Architectural	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX) Total full duplex transceiver count GXE transceiver count - PAM4 (up to 58 Gbps) or NRZ (up to 30 Gbps) GXT transceiver count - NRZ (up to 28.3 Gbps) GX transceiver count - NRZ (up to 17.4 Gbps) PCI Express* (PCIe*) hard intellectual property (IP) blocks (Gen3 x16)	Yes 448 216 48 0 32 16 2	- 656 312 96 0 64 32	erency unit, hard me I ² C x5, g - 656 312 96 0 64 32 4	mory controllers, USI eneral-purpose time - 584 288 96 72 16 8	3 2.0 x2, 1G EMAC x. rs x7, watchdog time - 640 312 48 0 32 16	3, UART x2, serial per x4 - 656 312 96 0 64 32	- 656 312 96 0 64 32	(SPI) x4, - 584 288 96 72 16 8
and Architectural	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX) Total full duplex transceiver count GXE transceiver count - PAM4 (up to 58 Gbps) or NRZ (up to 30 Gbps) GXT transceiver count - NRZ (up to 28.3 Gbps) GX transceiver count - NRZ (up to 17.4 Gbps) PCI Express* (PCIe*) hard intellectual property (IP) blocks (Gen3 x16) 100G Ethernet MAC (no FEC) hard IP blocks	Yes 448 216 48 0 32 16 2 2	- 656 312 96 0 64 32 4	erency unit, hard me I ² C x5, g - 656 312 96 0 64 32 4	mory controllers, USI eneral-purpose time - 584 288 96 72 16 8 1	3 2.0 x2, 1G EMAC x. rs x7, watchdog time - 640 312 48 0 32 16 2	3, UART x2, serial per x4 - 656 312 96 0 64 32 4 0	- 656 312 96 0 64 32 4	(SPI) x4, - 584 288 96 72 16 8 1
I/O and Architectural	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX) Total full duplex transceiver count GXE transceiver count - PAM4 (up to 58 Gbps) or NRZ (up to 30 Gbps) GXT transceiver count - NRZ (up to 28.3 Gbps) GX transceiver count - NRZ (up to 17.4 Gbps) PCI Express* (PCle*) hard intellectual property (IP) blocks (Gen3 x16) 100G Ethernet MAC (no FEC) hard IP blocks 100G Ethernet MAC + FEC hard IP blocks	Yes 448 216 48 0 32 16 2 2 0	- 656 312 96 0 64 32 4	erency unit, hard me I ² C x5, g - 656 312 96 0 64 32 4 4 0 DDR4, DDR3, DDR2,	mory controllers, USI eneral-purpose time - 584 288 96 72 16 8 1	3 2.0 x2, 1G EMAC x. rs x7, watchdog time - 640 312 48 0 32 16 2	3, UART x2, serial per x4 - 656 312 96 0 64 32 4 0	- 656 312 96 0 64 32 4	(SPI) x4, - 584 288 96 72 16 8 1
i/O and Architectural	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX) Total full duplex transceiver count GXE transceiver count - PAM4 (up to 58 Gbps) or NRZ (up to 30 Gbps) GXT transceiver count - NRZ (up to 28.3 Gbps) GX transceiver count - NRZ (up to 17.4 Gbps) PCI Express* (PCle*) hard intellectual property (IP) blocks (Gen3 x16) 100G Ethernet MAC (no FEC) hard IP blocks 100G Ethernet MAC + FEC hard IP blocks Memory devices supported	Yes 448 216 48 0 32 16 2 2 0	- 656 312 96 0 64 32 4	erency unit, hard me I ² C x5, g - 656 312 96 0 64 32 4 4 0 DDR4, DDR3, DDR2,	mory controllers, USI eneral-purpose time - 584 288 96 72 16 8 1	3 2.0 x2, 1G EMAC x. rs x7, watchdog time - 640 312 48 0 32 16 2	3, UART x2, serial per x4 - 656 312 96 0 64 32 4 0	- 656 312 96 0 64 32 4	(SPI) x4, - 584 288 96 72 16 8 1
no and Architectural	Maximum user I/O pins LVDS pairs 1.6 Gbps (RX or TX) Total full duplex transceiver count GXE transceiver count - PAM4 (up to 58 Gbps) or NRZ (up to 30 Gbps) GXT transceiver count - NRZ (up to 28.3 Gbps) GX transceiver count - NRZ (up to 17.4 Gbps) PCI Express* (PCIe*) hard intellectual property (IP) blocks (Gen3 x16) 100G Ethernet MAC (no FEC) hard IP blocks 100G Ethernet MAC + FEC hard IP blocks Memory devices supported age Options and I/O Pins: General-Purpose I/O (GPIO) Count, Hig	Yes 448 216 48 0 32 16 2 2 0 h-Voltage I/O Count,	- 656 312 96 0 64 32 4 4 0	erency unit, hard me I ² C x5, g - 656 312 96 0 64 32 4 4 0 DDR4, DDR3, DDR2,	mory controllers, USI eneral-purpose time - 584 288 96 72 16 8 1 1 1 2 DDR, QDR II, QDR II+	3 2.0 x2, 1G EMAC x. rs x7, watchdog time - 640 312 48 0 32 16 2 2 0 , RLDRAM II, RLDRA	3, UART x2, serial per x4 - 656 312 96 0 64 32 4 4 0 M 3, HMC, MoSys	- 656 312 96 0 64 32 4 0	(SPI) x4, - 584 288 96 72 16 8 1