
Introduction to Python

Karolos POTAMIANOS

University of Oxford (UK)
February 23, 2021

European School in Instrumentation for Particle and Astroparticle Physics (ESIPAP)

European Scientific Institute, Archamps, France

(ONLINE)

A bit about me …

Education
• BSc./MSc. in Applied Physics

@ Ecole Polytechnique, ULB, Belgium
• BSc. in Business Administration

@ Solvay Business School, ULB, Belgium
• PhD in Particle Physics

@ Purdue University, USA
Research
• 2012 – Present :: Researcher

@ CERN
• 2012 – 2017 :: Postdoctoral Research Fellow

@ Lawrence Berkeley National Laboratory (LBNL), USA
• 2017 – 2020 :: Research Fellow

@ Deutsches Elektronen-Synchrotron (DESY), GER
• 2020 – Present :: Ernest Rutherford Fellow

@ University of Oxford, UK

2

karolos.potamianos@cern.ch

@kpotamianos

http://linkedin.com/in/karolos

mailto:karolos.potamianos@cern.ch
http://twitter.com/kpotamianos
http://linkedin.com/in/karolos

… and a bit about you

3

Some of the material is inspired from past ESIPAP lectures by
Jérôme Odier, whom I thank for allowing me to re-use.

4

Why Python ?

• Why Python ? Why (yet) another programming language ?

“Python is an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python’s elegant syntax
and dynamic typing, together with its interpreted nature, make it an
ideal language for scripting and rapid application development in
many areas on most platforms.”

“The Python interpreter is easily
extended with new functions and
data types implemented in C or C++
(or other languages callable from C).”

Appeared in 1991; 20 years ago
Designed by Guido van Rossum
Stable release 3.9.1 (& 2.7.18)
URL http://www.python.org/
OS cross-platform

Python

5

http://www.python.org/

Why Python ?

• Python is very nice for thigs like
• writing scripts / command line tools (e.g. replacing bash)
• symbolic computation
• data analysis

• Its interpreted nature means that it (the language) is not meant for
high-performance tasks (though it gets better at some of it)
• unless it calls dedicated specialized functions in C/C++

(or other languages)
• luckily this integration is possible and quite easy

• Python is a great tool for scripting and benefits from
a huge ecosystem of libraries and tools

6

SymPy
pyROOT
NumPy
SciPy
Matplotlib
...

The Philosophy of Python – The Zen of Python

1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
5. Flat is better than nested.
6. Sparse is better than dense.
7. Readability counts.
8. Special cases aren't special enough to break the rules.
9. Although practicality beats purity.
And 10 more rules…

https://www.python.org/dev/peps/pep-0020/

7

https://www.python.org/dev/peps/pep-0020/

More about Python

• Python is
• structured (if, for, etc.)
• object-oriented
• module-oriented

• modern (reflexion and garbage collection)
• cross-plaform (portable code)
• interpreted (bytecode virtual machine, like Java)
• not optimized for performance (but can wrap around such code)

8

What is Python ?

• Python is a backend programming language that’s great for beginners.
• Python is approachable. Even if you haven’t taken a CS class, you can still write a useful

tool in Python. It’s high-level, so you don’t have to deal with the lower-level aspects of
programming, such as memory management.

• Python can be used for scripting, web scraping, and creating data sets. It’s popular in the
scientific community for scientific computing; there are libraries that make it easy to
share academic code projects in Python.

• Python is a web programming language, so it interfaces with the internet. It knows how
to receive and send web requests and talk to databases.

• Python is said to be “loosely typed.” This category of programming languages doesn’t
require you to state the type of value a function returns when you define the function or
the type of variable before you create it.

• The Python community is welcoming, well-maintained, and well-documented. That’s
important for a beginner!

9 [Source]

https://www.coursereport.com/blog/what-is-python-programming

Indentation in Python

• One of Van Rossum’s decisions was to make indentation meaningful
• This is unusual in programming languages.
• Despite critics, this feature is part of the reason it is both readable and popular.
• Good code style and readability is enforced by the way you must write Python.

10

void myFunction() {
/* function body */

}

def myFunction():
____# The function body

C++

Python

Why Python is Good for Beginners

• Python syntax is very similar to English, so it’s intuitive, which helps you understand it.
• You don't have to look up what symbols mean when you use Python.

11

import random

def get_random_color():
colors = ['green', 'blue', 'red', 'yello']
random_color = random.choice(colors)
return random_color

Using the interpreter

Who can guess what this function is doing ?

Disadvantages of Python

• Python is slower than other languages.
• Trade off between how high-level and abstract a programming language is and how

efficient it is in terms of speed, memory usage and space usage.
• It is not low-level, and not as fast or efficient as a compiled, lower-level language.
• It’s less common to use Python to build distributed database systems or other

systems where speed is incredibly important.
• There are also some concerns about scalability, although you can make Python scalable

with different implementations of the language, such as PyPy.

• BUT it's probably nothing you should worry about unless you develop applications for
high-performance computing or time-critical applications (e.g. data acquisition)

• REMEMBER that readability counts, and that it most of the time doesn't matter whether
your code takes 1 second rather than 10 ms (assuming it doesn't have to run repeatedly,
e.g. for many events) and human time is more precious than CPU time.

12

Usage of Python

13 Source: Stack Overflow Trends

https://insights.stackoverflow.com/trends?tags=r,python,javascript,java,c++,c%23

The versions of Python

• Perhaps the most confusing par about python is that version 3 is not backward
compatible with version 2
• Python 3 started as a cleanup which ended up changing too many things
• Decision to use Unicode by default was the lead cause (as the rest could have

been done using the deprecation process)
• Nevertheless, there is a high usage of v2 together with a large community (driven

by machine learning) using the new features of v3
• Many packages are maintained for both v2 and v3

• BUT Python 2 reached End-Of-Life (EOL) in 2020
• I’d recommend you focus on Python 3 (but remember v2 will stick around)

• More info (in case you're curious):
• Why Python 3: https://snarky.ca/why-python-3-exists/
• Porting from v2 to v3: https://docs.python.org/3.7/howto/pyporting.html

14

https://snarky.ca/why-python-3-exists/
https://docs.python.org/3.7/howto/pyporting.html

15

Let's get into Python

The Python Console

16

$ python3
Python 3.7.7 (default, Mar 10 2020, 15:43:03)
[Clang 11.0.0 (clang-1100.0.33.17)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> print("Hello world!")
Hello world!
>>> quit()
$

$ cat !$
cat hello.py
#!/usr/bin/env python3

Going to print out something
print("Hello world!")
$ python3 hello.py
Hello world!
$ chmod +x hello.py && ./hello.py
Hello world!

Using the interpreter

Calling a script

Python Data Structures

17 Image: DataCamp

https://www.datacamp.com/community/tutorials/data-structures-python

(Python) Primitive Data Structures

• Integers: represent numeric data, and more specifically, whole
numbers from negative infinity to infinity, like 4, 5, or -1.
• Float: stands for 'floating point number'. You can use it for rational

numbers, usually ending with a decimal figure, such as 1.11 or 3.14.
• String: collections of alphabets, words or other characters. In Python,

you can create strings by enclosing a sequence of characters within a
pair of single or double quotes. For example: 'cake', "cookie", etc.
• Boolean: built-in data type that can take up the values True or False,

which often makes them interchangeable with the integers 1 and 0.
Booleans are useful in conditional and comparison expressions.

18

Operators

• Like every programming language,
Python has operators to perform
operations on data types

• Like in mathematics, there is a priority
in the order in which the operations
are executed

• How much is 4 * 3 + 1 ? 13 or 16 ?

• Parentheses can be used to explicitly
ensure which order was meant, e.g.,
(4*3) + 1 vs. 4 * (3+1)

• Many bugs due to misremembering
the priority of operators

19

Operations on Primitive Data Structures

20

Floats
x = 4.0
y = 2.0

print(x + y) # Addition
print(x - y) # Subtraction
print(x * y) # Multiplication
print(x / y) # Returns the quotient
print(x % y) # Returns the remainder
print(abs(x)) # Absolute value
print(x ** y) # x to the power y

Operations on Float

In Python, you do not have to explicitly state the type of the variable or your
data. That is because it is a dynamically typed language. Such languages are the
those where the type of data an object can store is mutable.

Operations on Primitive Data Structures

21

>>> # Floats
>>> x = 4.0
>>> y = 2.0
>>>
>>> print(x + y) # Addition
6.0
>>> print(x - y) # Subtraction
2.0
>>> print(x * y) # Multiplication
8.0
>>> print(x / y) # Returns the quotient
2.0
>>> print(x % y) # Returns the remainder
0.0
>>> print(abs(x)) # Absolute value
4.0
>>> print(x ** y) # x to the power y
16.0

Operations on Float

Operations on Primitive Data Structures

22

>>> x = 'Cake'
>>> y = 'Cookie'
>>> x + ' & ' + y
'Cake & Cookie'
>>> x * 2
'CakeCake'
>>> x[2:] # A string is basically an array of characters
'ke'
>>> y[0] + y[1]
'Co'
>>> a = '4' # Character 4, not the digit 4
>>> b = '2' # Character 2, not the digit 2
>>> a + b
'42'

Operations on Strings

Operations on Primitive Data Structures

23

>>> str.capitalize('cookie')
'Cookie'
>>> str1 = "Cake 4 U"
>>> str2 = "404"
>>> len(str1)
8
>>> str1.isdigit()
False
>>> str2.isdigit()
True
>>> str1.replace('4 U', str2)
'Cake 404'
>>> str1 = 'cookie'
>>> str2 = 'cook'
>>> # Position where 'cook' is found in 'cookie'
>>> str1.find(str2)
0

Operations on Strings

Multi-line Definition of Strings

24

>>> s = """
... Hello
... This is on multiple lines"
...
... ""
... """
>>> print(s)

Hello
This is on multiple lines"

""

>>> # This is a comment and is ignored
>>>

Strings

Operations with Primitive Data Structures

25

>>> x = 4
>>> y = 2
>>> x == y
False
>>> x > y
True
>>> x < y
False

Usage of Booleans

(Implicit) Type Conversions

• In some cases (typically with numeric types), implicit conversions are performed (e.g. y is
converted into float when doing the division)

26

>>> x = 4.0 # A float
>>> y = 2 # An integer
>>> z = x/y # Divide `x` by `y`
>>> type(z) # Check the type of `z`
<class 'float'>
>>> x = 1
>>> y = 2
>>> x/y
0.5
>>> type(x), type(y), type(x/y)
(<class 'int'>, <class 'int'>, <class 'float'>)

Implicit Type Conversions

(Explicit) Type Conversions

• In other (most) cases you'll need to perform an explicit type conversion (here say that
we wanted to add the string representation of 2 to a string (concatenation operation)

27

>>> x = 2
>>> y = "The Godfather: Part "
>>> favorite_movie = y + x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str
>>> favorite_movie = y + str(x)
>>> print(favorite_movie)
The Godfather: Part 2

Explicit Type Conversions

(Python) Non-Primitive Data Structures

• Arrays: compact way of collecting basic data types, all the entries in
an array must be of the same data type. They are a more efficient
way of storing a certain kind of list (see below).
• List: used to store collection of heterogeneous items. These are

mutable (you can change their content without changing their
identity). Lists are recognizable by their square brackets [and] that
hold elements, separated by a comma ,. Lists are built into Python: no
need to invoke them separately.

28

Python Arrays and Lists

29

>>> import array as arr
>>> a = arr.array("I",[3,6,9])
>>> type(a)
<class 'array.array'>
>>> x = [] # Empty list
>>> type(x)
<class 'list'>
>>> x1 = [1,2,3]
>>> type(x1)
<class 'list'>
>>> x2 = list([1,'apple',3])
>>> type(x2)
<class 'list'>
>>> print(x2[1])
apple
>>> x2[1] = 'orange'
>>> print(x2)
[1, 'orange', 3]

Arrays & Lists

More on Python Arrays

30

>>> list_num = [1,2,45,6,7,2,90,23,435]
>>> list_char = ['c','o','o','k','i','e']
>>> list_num.append(11) # Add 11 at the end of the list
>>> print(list_num)
[1, 2, 45, 6, 7, 2, 90, 23, 435, 11]
>>> list_num.insert(0, 11)
>>> print(list_num)
[11, 1, 2, 45, 6, 7, 2, 90, 23, 435, 11]
>>> list_char.remove('o')
>>> print(list_char)
['c', 'o', 'k', 'i', 'e']
>>> list_char.pop(-2) # Removes the item at the specified position
'i'
>>> print(list_char)
['c', 'o', 'k', 'e']
>>> list_num.sort() # In-place sorting
>>> print(list_num)
[1, 2, 2, 6, 7, 11, 11, 23, 45, 90, 435]
>>> list.reverse(list_num)
>>> print(list_num)
[435, 90, 45, 23, 11, 11, 7, 6, 2, 2, 1]

Arrays

Python Arrays vs. Lists

31

>>> import array
>>> array_char = array.array("u",["c","a","t","s"])
>>> x = array_char.tostring() # not possible with list
>>> print(array_char)
array('u', 'cats')
>>> x1 = [1,2,3]
>>> x1.tostring()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'list' object has no attribute 'tostring'

Arrays vs. Lists

Note on Arrays vs. Lists

• We can apply the tostring() function on the array_char
array object because Python is aware that all the items in an array are
of the same data type and hence the operation behaves the same
way on each element.
• Arrays can be very useful when dealing with a large collection of

homogeneous data types.
• As Python does not have to remember the data type details of each

element individually; for some uses arrays may be faster and uses
less memory when compared to lists.

32

Numpy Arrays

33

>>> import numpy as np
>>> arr_a = np.array([3, 6, 9])
>>> arr_b = arr_a/3 # Performing vectorized (element-wise)
operations
>>> print(arr_b)
[1. 2. 3.]
>>> arr_ones = np.ones(4)
>>> print(arr_ones)
[1. 1. 1. 1.]
>>> multi_arr_ones = np.ones((3,4)) # Creating 2D array with
3 rows and 4 columns
>>> print(multi_arr_ones)
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

Numpy Arrays

Numpy is very often use for machine learning applications (but not only!)

More Non-Primitive Data Structures

• The list data structure can be further categorised into two:
linear and non-linear data structures.
• Stacks and Queues are called linear data structures
• Graphs and Trees are non-linear data structures

• These structures and their concepts can be relatively complex but are
used extensively due to their resemblance to real world models
• In linear data structure, the data items are organised sequentially, or

linearly. The data items are traversed serially one after another. All
the data items in a linear structure can be traversed in a single run.
• In non-linear data structures, the data items are not organized

sequentially. The elements could be connected to more than one
element to reflect a special relationship among these items. All the
items in a non-linear structure may not be traversed in a single run.

34

Stacks and Queues (and deques)

• Stacks: a container of objects that are inserted and removed
according to the Last-In-First-Out (LIFO) concept. (Think of documents
in a processing pile on a desk.)
• Queues: a container of objects that are inserted and removed

according to the First-In-First-Out (FIFO) principle. (Think of a ticket
counter where people are processed according to their arrival time.)
• Deques: a double-ended queue is a container that has the feature of

adding and removing elements from either end. (Think of a history of
commands that have been processed, of which you only want to
remember the N most recent ones).
• These structures are used for performing many operations, from

evaluating expressions to syntax parsing and algorithm scheduling.

35

Stacks in Python (are simply Lists)

36

>>> # Bottom -> 1 -> 2 -> 3 -> 4 -> 5 (Top)
>>> stack = [1,2,3,4,5]
>>> stack.append(6) # Bottom -> 1 -> 2 -> 3 -> 4 -> 5 -> 6
(Top)
>>> print(stack)
[1, 2, 3, 4, 5, 6]
>>> stack.pop() # Bottom -> 1 -> 2 -> 3 -> 4 -> 5 (Top)
6
>>> stack.pop() # Bottom -> 1 -> 2 -> 3 -> 4 (Top)
5
>>> print(stack)
[1, 2, 3, 4]

Stacks

There are also other implementations, but this is a convenient one.

Queues in Python

37

>>> import queue
>>> q = queue.Queue()
>>> q.put(0)
>>> q.put(1)
>>> q.put(2)
>>> print(q.get(), q.get(), q.get())
0 1 2
>>>
>>> s = queue.LifoQueue() # The same class can do stacks
>>> s.put(0)
>>> s.put(1)
>>> s.put(2)
>>> print(s.get(), s.get(), s.get())
2 1 0

Queues

Deques in Python

38

>>> import collections
>>> d = collections.deque(["Mon","Tue","Wed"])
>>> print (d)
deque(['Mon', 'Tue', 'Wed'])
>>> d.append("Thu") # Append to the right
>>> print (d)
deque(['Mon', 'Tue', 'Wed', 'Thu'])
>>> d.appendleft("Sun") # Append to the left
>>> print (d)
deque(['Sun', 'Mon', 'Tue', 'Wed', 'Thu'])
>>> d.pop() # Remove from the right
'Thu'
>>> print (d)
deque(['Sun', 'Mon', 'Tue', 'Wed'])
>>> d.popleft() # Remove from the left
'Sun'
>>> print (d)
deque(['Mon', 'Tue', 'Wed'])
>>> d.reverse() # Reverse the dequeue
>>> print (d)
deque(['Wed', 'Tue', 'Mon'])

Deques

Graphs

• Graphs: networks consisting of nodes, also called vertices which may
or may not be connected to each other. The lines or the path that
connects two nodes is called an edge.
• If the edge has a direction of flow, then it is a directed graph
• If no directions are specified, it is called an undirected graph
• If the edges carry a weight, it is called a weighted graph

39

Trees

• Trees: used to describe how data is sometimes organized, but unlike
real trees, the root is on the top and the branches, leaves follow,
spreading towards the bottom

40

Tuples

• Tuples: a standard sequence data type. Contrary to lists, tuples are
immutable, which means once defined you cannot delete, add or edit
any values inside it. This is useful in situations where you might to
pass the control to code written by others, but you do not want them
to manipulate data in your collection.

41

>>> x_tuple = 1,2,3,4,5
>>> y_tuple = ('c','a','k','e')
>>> x_tuple[0]
1
>>> y_tuple[3]
'e'
>>> x_tuple[0] = 0 # Cannot change values inside a tuple
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Tuples

Dictionaries

• Dictionary: a standard structure to represent … a dictionary (e.g. a
telephone book), i.e., in cases you need to perform a lookup. They are
made up of key-value pairs. The key is used to identify the item and
the value holds as the name suggests, the value of the item.

42

>>> x_dict = {'Edward':1, 'Jorge':2, 'Prem':3, 'Joe':4}
>>> del x_dict['Joe']
>>> x_dict
{'Edward': 1, 'Jorge': 2, 'Prem': 3}
>>> x_dict['Edward'] # Prints the value stored with the key
'Edward'.
1
>>> len(x_dict)
3
>>> x_dict.keys()
dict_keys(['Edward', 'Jorge', 'Prem'])
>>> x_dict.values()
dict_values([1, 2, 3])

Dictionaries

Graph Implementation with Dictionary

43

>>> graph = { "a" : ["c", "d"],
... "b" : ["d", "e"],
... "c" : ["a", "e"],
... "d" : ["a", "b"],
... "e" : ["b", "c"]
... }
>>>
>>> def define_edges(graph):
... edges = []
... for vertices in graph:
... for neighbour in graph[vertices]:
... edges.append((vertices, neighbour))
... return edges
...
>>> print(define_edges(graph))
[('a', 'c'), ('a', 'd'), ('b', 'd'), ('b', 'e'), ('c', 'a'), ('c',
'e'), ('d', 'a'), ('d', 'b'), ('e', 'b'), ('e', 'c')]

Graph

Sets

• Set: a collection of distinct (unique) objects. These are useful to
create lists that only hold unique values in the dataset.

44

>>> x_set = set('CAKE&COKE')
>>> y_set = set('COOKIE')
>>> print(x_set)
{'C', 'K', '&', 'A', 'E', 'O'}
>>> print(y_set) # Single unique 'o'
{'C', 'K', 'E', 'O', 'I'}
>>> print(x_set-y_set) # All the elements in x_set but
not in y_set
{'A', '&'}
>>> print(x_set|y_set) # Unique elements in x_set or
y_set or both
{'C', 'K', '&', 'A', 'E', 'O', 'I'}

Sets

Files

No programming language would truly be useful without the capability to store and
retrieve previously stored information. Files are a common place where we hold
data (there are other forms, too).

Here are some common file operations:

• open() to open files in your system
• first argument is the file name, second the mode: r(ead), w(rite), a(ppend)

• read() to read entire files
• readline() to read one line at a time
• write(something) to write a something to a file (returns the number of characters written)

• close() to close the file.

45

None

None is frequently used in Python to represent the absence of a value, for example
when default arguments are not passed to functions (more later).

The operators is and not can be used to check whether an element exists.

46

>>> x = None
>>> x is None
True
>>> x is not None
False
>>> not None
True

Sets

On Whitespaces and Blocks

• Indentation is meaningful in Python: the same number of spaces or
tabs is needed to indent one level in the same file.
• You can use backslashes \ to go to the next line (in case of long lines)
• There are no braces to mark blocks of code
• Indented blocks have a semicolon : to start them
• Blocks must contain at least one instruction ; use pass if you need to

make an empty block

47

>>> print(x)
[1, 2, 3, 4, 5, 6]
>>> def printHello():
... print("Hello")
...
>>> printHello()
Hello

Python Code

Functions

Functions are used to modularise code and re-use the same code pieces by calling
them again. They can have any number of arguments, provided as a comma-
separated tuple.

Functions can also be called with keyword arguments kwarg=value (Google it)48

>>> def sum(a,b):
... return a+b
...
>>> sum(1,2)
3
>>> def sum_with_defaults(a = 1, b = 10):
... return a+b
...
>>> sum_with_defaults()
11
>>> sum_with_defaults(5)
15

Functions

Control Flow Statements: if / elif / else

Conditionally execute statements/blocks. The keyword ‘elif’ is short for ‘else if’, and
is useful to avoid excessive indentation. An if … elif … elif … sequence is a substitute
for the switch or case statements found in other languages.

49

>>> x = 0
>>> if x < 10:
... print("Less than 10")
... elif x > 10 and x < 20:
... print("Between 10 and 20")
... else:
... print("More than 20")
...
Less than 10

if/elif/else

Control Flow Statements: while

While is used for repeated execution as long as an expression is true.

50

>>> x = 0
>>> while x < 2:
... print(x)
... x += 1
...
0
1

while

Control Flow Statements: for

While is used to iterate over the elements of a sequence (such as a
string, tuple or list) or other iterable object

51

>>> for i in [0, 1, 2]:
... print(i)
... i=5
...
0
1
2
>>> # Note that i=5 has no effect

for

Control Flow Statements: break and continue

Break is used to stop the execution of the loop. It breaks out of the innermost
enclosing for or while loop. Continue continues with the next iteration of the loop.

52

>>> for n in range(2,8): # range(2,8) == [2, 3, 4, 5, 6, 7]
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else: # else can also be used in this context (note intendation)
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number

break

Control Flow Statements: break and continue

Break is used to stop the execution of the loop. It breaks out of the innermost
enclosing for or while loop. Continue continues with the next iteration of the loop.

53

>>> for num in range(2, 10): # range(2,10) == [2, 3, 4, 5, 6, 7, 8, 9]
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

continue

Exception handling : try and except

Concept: for code within a try block, when an error occurs, an exception is raised,
and the program execution is suspended.
• If the exception is not caught, the program terminates
• If it is, using except, the program resumes its execution in the exception handler
• Usually one except block per exception type (multiple can occur)

An exception is raised using, e.g., raise ValueError("an exception")

54

>>> while True:
... try:
... x = int(input("Please enter a number: "))
... break
... except ValueError:
... print("Oops! That was no valid number. Try again...")
...

Exceptions

Exception handling : try and except

Some common exceptions are (more at https://docs.python.org/3/library/exceptions.html)

• SyntaxError: syntax error
• ValueError: when an argument that has the right type but an inappropriate value
• OSError: when a system function returns a system-related error
• KeyError: when a mapping (dictionary) key is not found in the set of existing keys

55

>>> class MyException(Exception):
... pass
...
>>> raise MyException("my message") # More on classes later
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

__main__.MyException: my message

User Defined Exceptions

Using Exceptions

56

>>> try:
... if error1: # Some error condition
... raise MyException("A problem occurred.")
... if error2: # Some error condition
... raise ValueError("Wrong value provided.")
... except MyException as e:
... print(e)
... except ValueError as e:
... print(e)
...

Using Exceptions

Helper functions

Python has a lot of functions that can be used to perform lots of tasks. The
"standard library" is quite extensive, and there are also lots of packages.

57

>>> list(range(0,5)) # Note that 4 is excluded from the range
[0, 1, 2, 3, 4]
>>> list(range(0,5,2)) # With a step of 2
[0, 2, 4]
>>> [x for x in range(0,5,2)] # Yes, this is valid in python
[0, 2, 4]

range

58

Let’s try some of this

Importing a Module

• A module is a collection of classes, functions, etc...
• Modules can be shared between multiple applications
• Modules are a very important aspect and allow for code re-use

59

>>> import module
>>> import module.submodule
>>> import module as m
>>> from module import submodule

Importing modules

PIP :: Package Installer for Python

• PIP is a package manager which allows you to conveniently install
packages / modules. More info here.

60

$ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
$ python3 get-pip.py

Installing pip

$ pip3 install --user numpy
Collecting numpy
Downloading numpy-1.18.2-cp37-cp37m-macosx_10_9_x86_64.whl

(15.1 MB)
|████████████████████████████████| 15.1 MB 126 kB/s

Installing collected packages: numpy
Successfully installed numpy-1.18.2

Using pip

https://pip.pypa.io/en/stable/installing/
https://bootstrap.pypa.io/get-pip.py%20-o%20get-pip.py

Creating a Module

• One can create his/her own modules by grouping functions/classes in
one or multiple files in a folder

• A module needs to be in the current directory or accessible via the
PYTHONPATH environment variable
export PYTHONPATH=/path/of/my/module1:/path/of/my/module2

61

$ mkdir MyModule
$ touch MyModule/__init__.py
$ touch MyModule/foo.py
$ touch MyModule/bar.py
Edit the files...
$ python3
>>> import MyModule
>>> import MyModule.foo
>>> import MyModule.bar

Importing modules

62

An exercise

Exercise

Write a command-line tool to append a line of text (read from the
keyboard) to a file. Don't go past the ANSWER section !!

Tips:
• The module sys should be called using import sys and you can

use sys.stdin as a file to read a line from your terminal
• In order to call the script directly, don't forget the shebang
#!/usr/bin/env python3
and to make the file executable (using chmod +x)

63

$./append_to_file.py
Hello
$ cat myFile.txt
Hello

Expected output

Python (Jupyter) Notebooks

• Jupyter Notebook documents are both human-readable documents
containing the analysis description and the results (figures, tables, etc..) as
well as executable documents which can be run to perform data analysis.
See, e.g.: https://jupyter-notebook-beginner-guide.readthedocs.io

• Google Colaboratory (https://colab.research.google.com/)
• Provides convenient access to Python Notebooks, which can be shared

and worked on collaboratively
• There are of course other providers, some even free
• See : https://colab.research.google.com/notebooks/intro.ipynb

64

https://colab.research.google.com/
https://colab.research.google.com/notebooks/intro.ipynb

Google Colaboratory

65

A text area for comments

A nice display for errors stack / help to search on Stack Overflow

Notebooks

66

A text area for comments

• A fancier example with
plots embedded in the
notebook

• This is very useful to
resume work and get a
stable environment

• In the back-end, there is
a python kernel that
remembers what you
ran in previous code
blocks in the document

CERN SWAN

• If you have a CERN account, use SWAN: https://swan.cern.ch
• (Conveniently) connects to your CERNbox/EOSuser space for storage
• Support for multiple languages (also C++) and links with ROOT

67

https://swan.cern.ch/

Locally

• Make sure you run python3 (on ”older” systems, python is still v2)
• Ideally, you should have a version >= 3.6

• This will open a web browser for you, starting from your local folder,
where you can create new notebooks and edit existing ones

68

$ python3 --version
Python 3.8.2
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install jupyter
...
(venv) $./venv/bin/jupyter notebook

Using Jupyter locally

69 https://xkcd.com/1987/

https://xkcd.com/1987/

A word on virtualenv

• Python applications will often use packages and modules that don’t come as part
of the standard library.
• Applications will sometimes need a specific version of a library, because the

application may require that a particular bug has been fixed or the application
may be written using an obsolete version of the library’s interface.
• This means it may not be possible for one Python installation to meet the

requirements of every application. [a.k.a. dependency hell]
• If application A needs version 1.0 of a particular module but application B

needs version 2.0, then the requirements are in conflict and installing either
version 1.0 or 2.0 will leave one application unable to run.

• More info here: https://docs.python.org/3/tutorial/venv.html

70

$ python3 -m venv venv
$ source venv/bin/activate
(venv) $

virtualenv

https://en.wikipedia.org/wiki/Dependency_hell
https://docs.python.org/3/tutorial/venv.html

Exercise (if you have no python on your system)

Using some python notebook, e.g. using Google Colaboratory, SWAN,
or local resources, write a tool to append a line of text (provided in-
code) to a file.
Don't go past the ANSWER section !!

Tips:
• You can use the question mark (!) to escape to the shell and run

(some) system commands, i.e.
!cat myFile.txt
will show you the content of the file called myFile.txt

71

https://colab.research.google.com/
https://swan.cern.ch/

72

Answers
Please try the exercise first…

A possible solution

73

#!/usr/bin/env python3

import sys

f = open("myFile.txt", "w")
data = sys.stdin.readline()
f.write(data)
f.close()

append_to_file.py

A possible solution in Google Colaboratory

74

f = open("myFile.txt", "w")
data = "This is my data"
f.write(data)
f.close()
!cat myFile.txt

In your Notebook

