

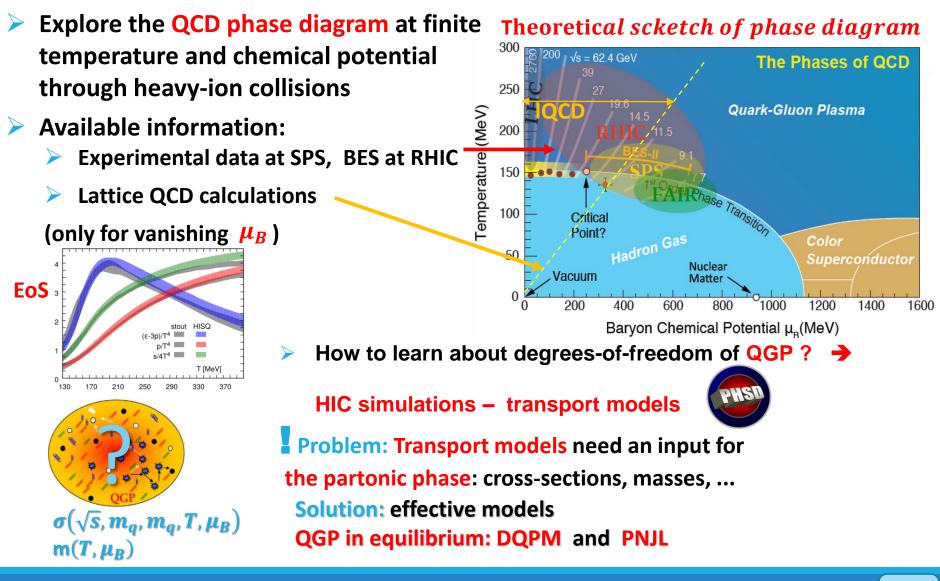
Transport properties and evolution of the QGP in HICs

Olga Soloveva* , Pierre Moreau, Lucia Oliva, Taesoo Song, Elena Bratkovskaya In collaboration with David Fuseau, Joerg Aichelin

HIPSTARS- Workshop on heavy lon Physics and Compact Stars December 4 2020

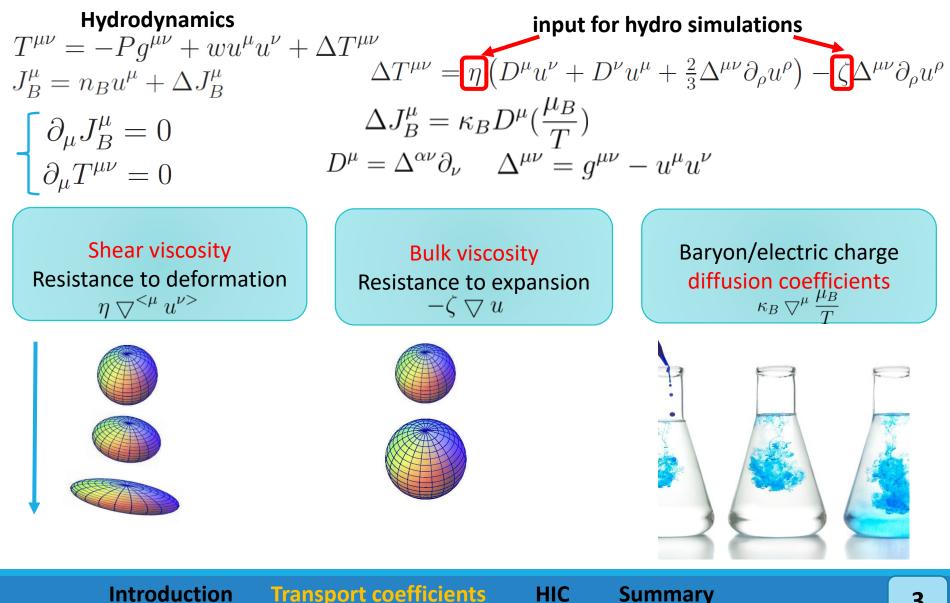
*soloveva@fias.uni-frankfurt.de

Motivation: QGP at finite baryon density

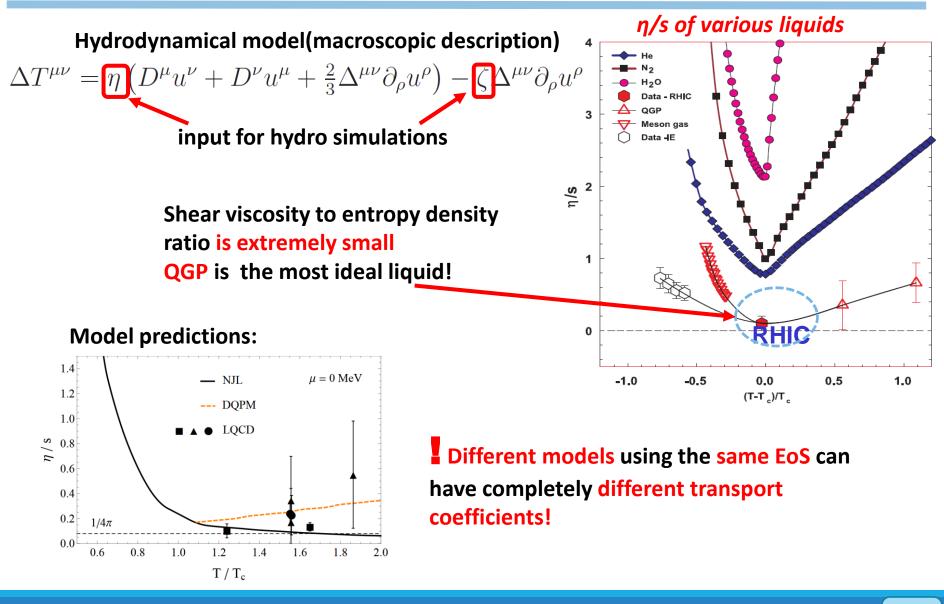


Transport coefficients

Properties of QGP: transport coefficients

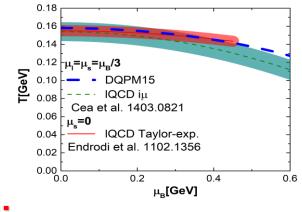


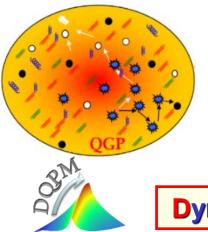
Transport coefficients of QGP



Introduction

Transport coefficients





QGP in equilibrium:

Dynamical QuasiParticle Model (DQPM)

DQPM: consider the effects of the nonperturbative nature of the strongly interacting quark-gluon plasma (sQGP) constituents (vs. pQCD models)

The QGP phase is described in terms of interacting quasiparticles: quarks and gluons with Lorentzian spectral functions:

$$\rho_j(\omega, \mathbf{p}) = \frac{\gamma_j}{\tilde{E}_j} \left(\frac{1}{(\omega - \tilde{E}_j)^2 + \gamma_j^2} - \frac{1}{(\omega + \tilde{E}_j)^2 + \gamma_j^2} \right)$$
$$\equiv \frac{4\omega\gamma_j}{\left(\omega^2 - \mathbf{p}^2 - M_j^2\right)^2 + 4\gamma_j^2\omega^2}$$

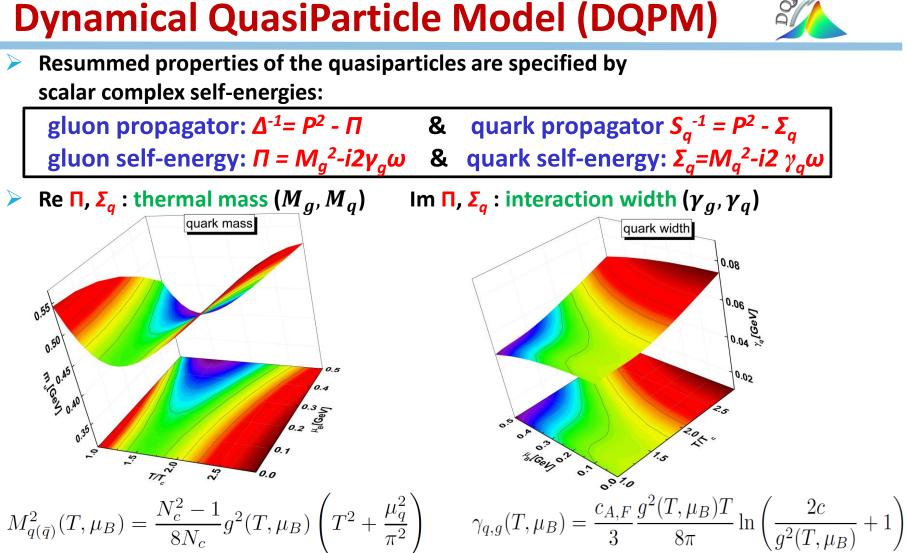
Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Introduction

Transport coefficients

Summary

Dynamical QuasiParticle Model (DQPM)



Modeling of the quark/gluon masses and widths (inspired by HTL calculations)

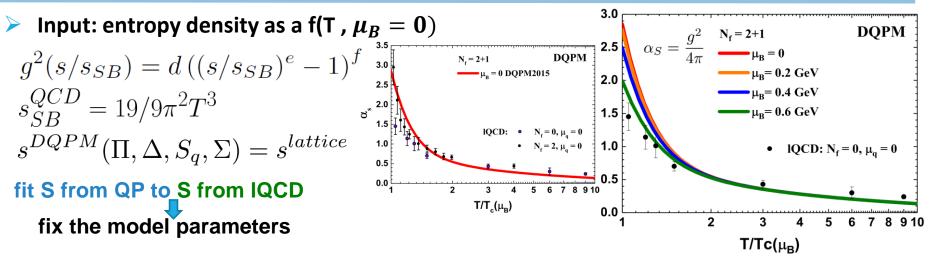
Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Introduction

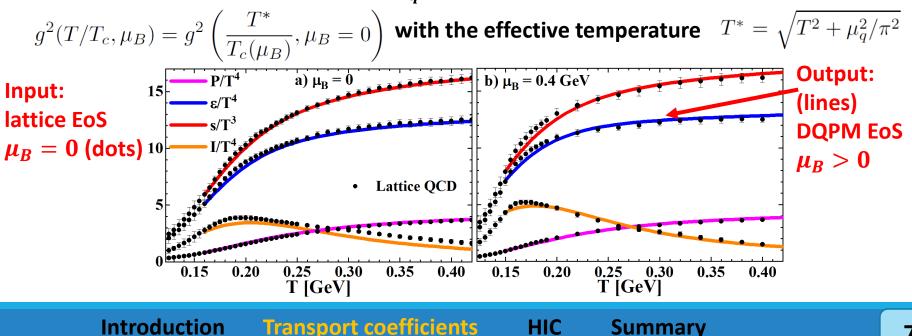
Transport coefficients

Summary

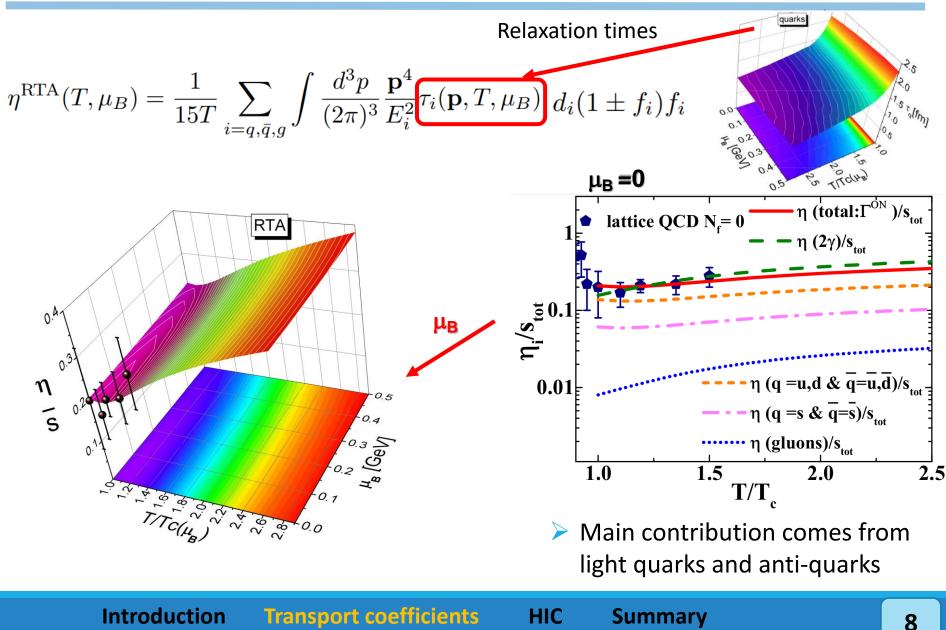
DQPM g^2 : fixed within s(IQCD) at μ_B =0



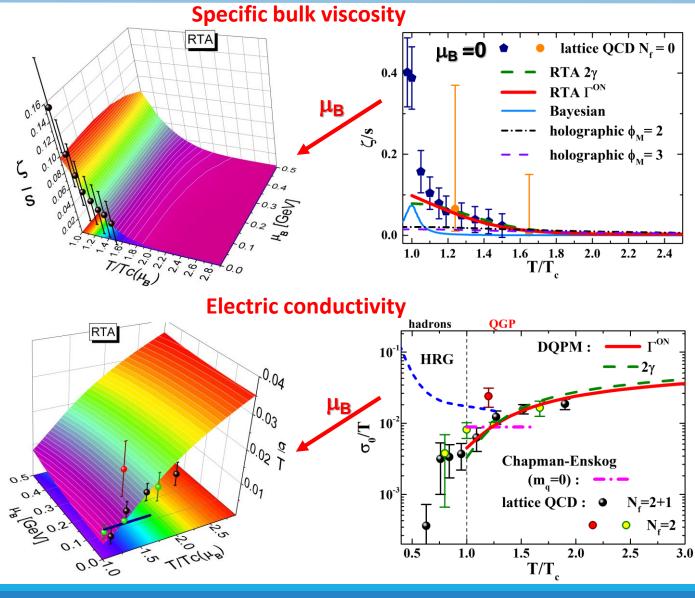
 $\succ~$ Scaling hypothesis at finite $\mu_B~pprox 3\mu_q$



Transport coefficients: specific shear viscosity



Transport coefficients: increasing with μ_B



Introduction

Transport coefficients

Polyakov Nambu Jona-Lasinio (PNJL) model

Effective lagrangian with the same symmetries for the quark dof as QCD

$$\mathscr{L}_{PNJL} = \sum_{i} \bar{\psi}_{i} (iD - m_{0i} + \mu_{i}\gamma_{0})\psi_{i}$$

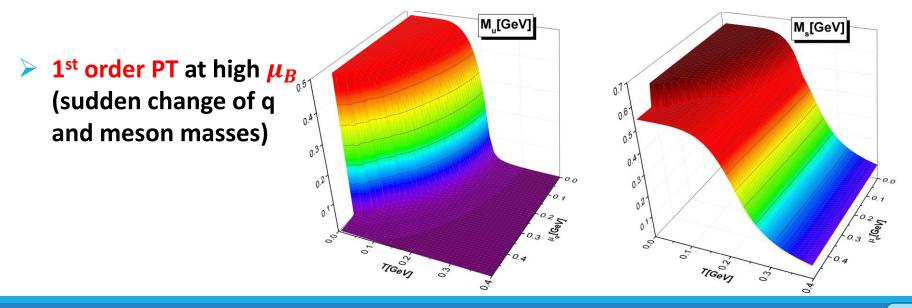
$$+ G \sum_{a} \sum_{ijkl} \left[(\bar{\psi}_{i} \ i\gamma_{5}\tau_{ij}^{a}\psi_{j}) \ (\bar{\psi}_{k} \ i\gamma_{5}\tau_{kl}^{a}\psi_{l}) + (\bar{\psi}_{i}\tau_{ij}^{a}\psi_{j}) \ (\bar{\psi}_{k}\tau_{kl}^{a}\psi_{l}) \right]$$

$$- K \det_{ij} \left[\bar{\psi}_{i} \ (-\gamma_{5})\psi_{j} \right] - K \det_{ij} \left[\bar{\psi}_{i} \ (+\gamma_{5})\psi_{j} \right]$$

5 parameters fixed by vacuum values K,π masses, η-η'mass splitting,π decay constant, Chiral condensate

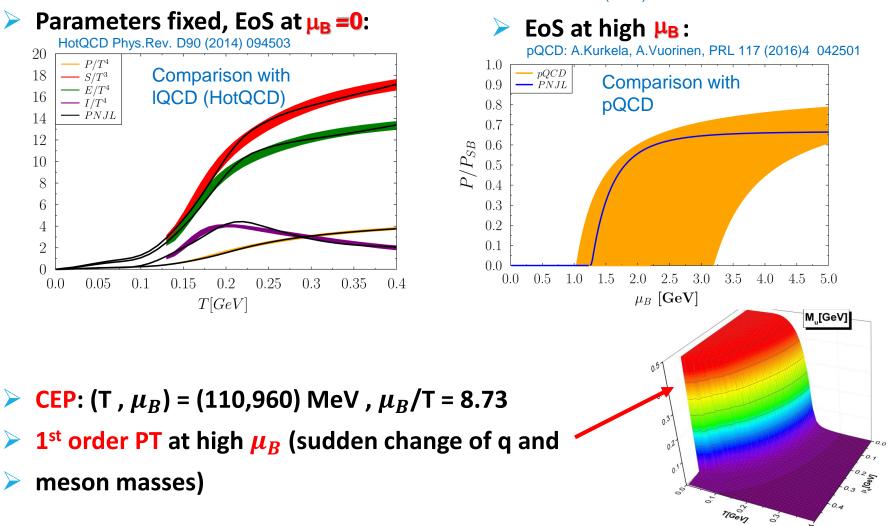
D.Fuseau, T.Steinernert, J.Aichelin PRC 101 (2020) 6 065203

> Gap equation + minimization of the grand potential \rightarrow Chiral masses (M_l, M_s)



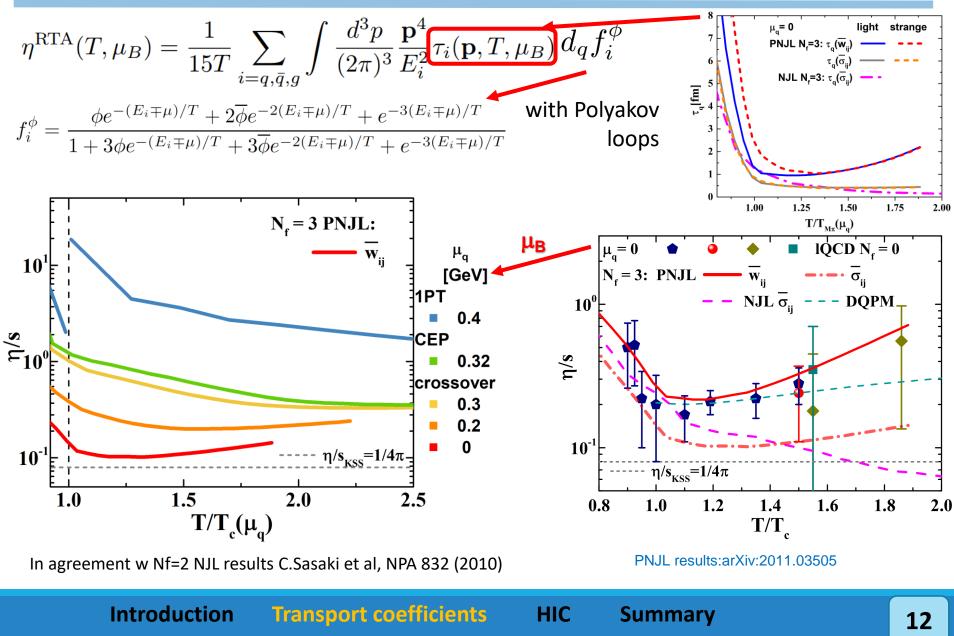
Polyakov Nambu Jona-Lasinio (PNJL)model: EOS

PNJL allow for predictions for finite T and μ_B : D. Fuseau, T. Steinernert, J.Aichelin PRC 101 (2020) 6 065203

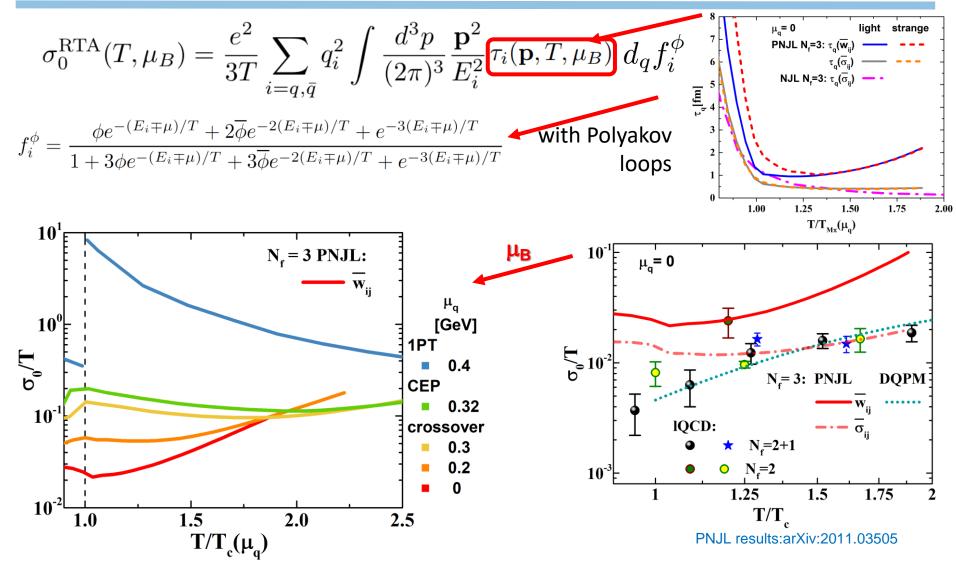


Introduction

Specific shear viscosity at high μ_B



Electric conductivity at high μ_B



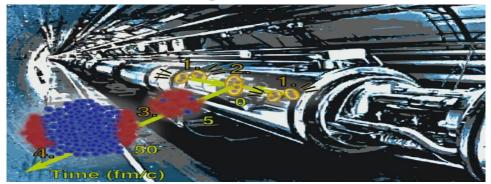
Introduction T

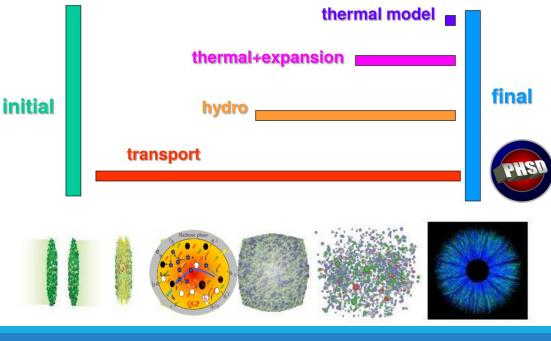
Transport coefficients

HIC Su

Summary

QGP out-of equilibrium $\leftarrow \rightarrow$ HIC

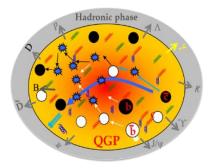




Introduction T

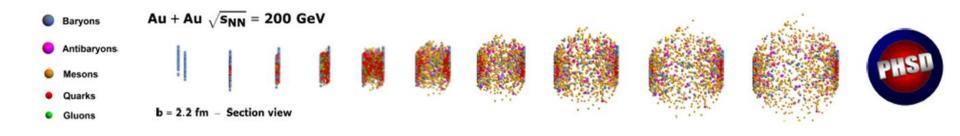
Transport coefficients

HIC Summary



QGP out-of equilibrium $\leftarrow \rightarrow$ HIC

Transport theory: off-shell transport equations in phase-space representation based on Kadanoff-Baym equations for the partonic and hadronic phase

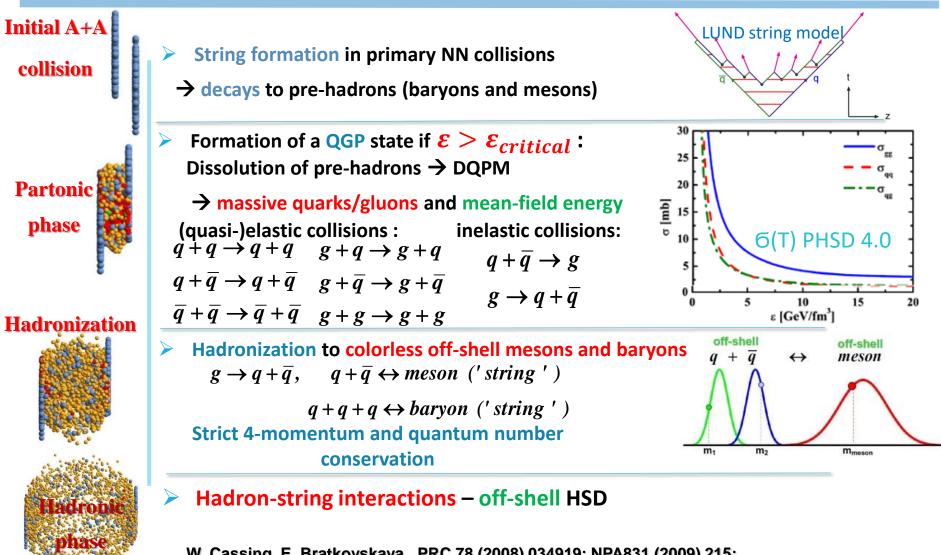


Introduction

Transport coefficients

HIC Su

Stages of a collision in the PHSD



W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Introduction Transport coefficients

Summary

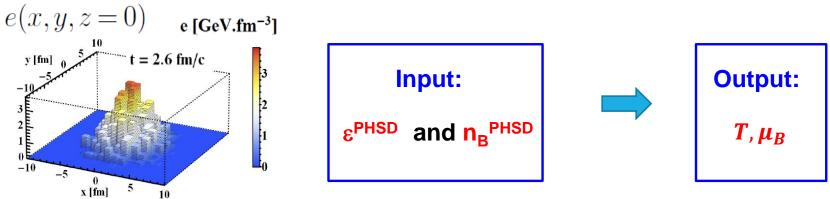
Extraction of (T, μ_B) in PHSD

- For each space-time cell of the PHSD: $T^{\mu\nu} = \sum_{i} \frac{p_i^{\mu} p_i^{\nu}}{E_i} \longrightarrow \text{Diagonalize in LRF} \longrightarrow \epsilon^{\text{PHSD}}$
- Calculate the local energy density ε^{PHSD} and baryon density n_B^{PHSD}
- use IQCD relations (up to 6th order):

$$\frac{n_B}{T^3} \approx \chi_2^B(T) \left(\frac{\mu_B}{T}\right) + \dots$$
$$\Delta \epsilon / T^4 \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T) \right) \left(\frac{\mu_B}{T}\right)^2 + \dots$$

Use baryon number susceptibilities χ_n from IQCD

 \rightarrow obtain (*T*, μ_B) by solving the system of coupled equations using ϵ^{PHSD} and n_B^{PHSD}

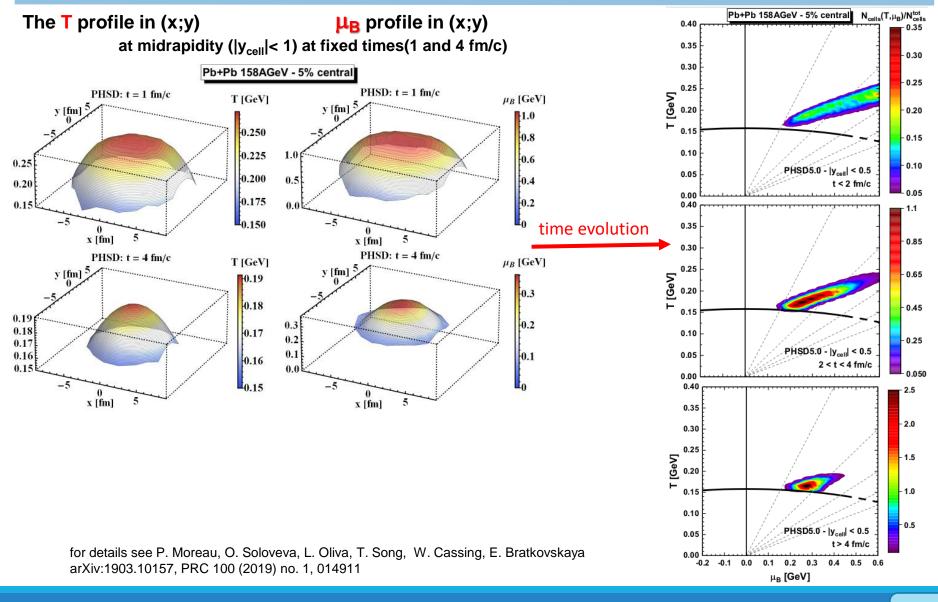


for details see P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya arXiv:1903.10157, PRC 100 (2019) no. 1, 014911

Introduction Transport coefficients

Summary

QGP evolution for HIC ($\sqrt{s_{NN}} = 17$ GeV)



Introduction Transport coefficients

Summary

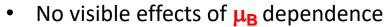
Comparison between three different results:

> PHSD 4.0 : only isotropic $\sigma(T)$ and $\rho(T)$ parton spectral function partonic cross sections (masses and widths)

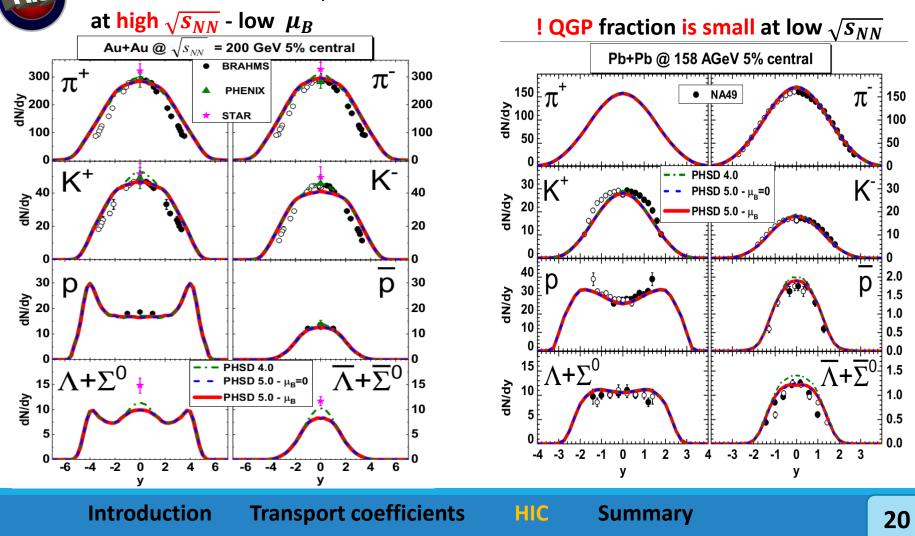
new PHSD 5 : angular dependence of $d\sigma/d \cos\theta$

- > PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B = 0)$ and $\rho(T, \mu_B = 0)$
- > PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B)$ and $\rho(T, \mu_B)$

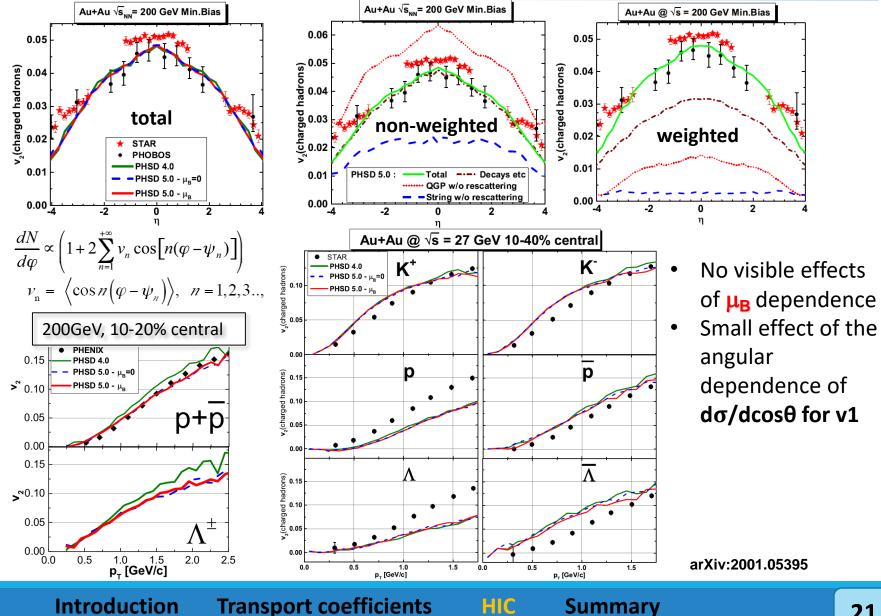
Results for ($\sqrt{s_{NN}}$ = 200 GeV vs $\sqrt{s_{NN}}$ = 17 GeV)



Small effect of the angular dependence of dσ/dcosθ



Elliptic flow ($\sqrt{s_{NN}} = 200 \ GeV \ vs \ 27 GeV$)



Summary / Outlook

- **Transport coefficients at finite T and** μ_B have been found using the (T, μ_B) -dependent cross sections (for cross-sections see DQPM[1] and PNJL[4])
- At µ_B = 0 good agreement with the Bayesian analysis estimations and IQCD estimations of QGP transport coefficients[2]
- Bulk observables have been studied within the PHSD transport approach[1,3]:
- > High- μ_B regions are probed at low $\sqrt{s_{NN}}$ or high rapidity regions But, QGP fraction is small at low $\sqrt{s_{NN}}$: no effects seen in bulk observables[1,3]
- > Directed and elliptic flows also don't show μ_B dependence, while v_2 is sensitive to the explicit \sqrt{s} dependence and angular dependence of partonic d σ /dcos θ [3]

Outlook:

- > More precise EoS large μ_B
- > Possible 1st order phase transition at large μ_B , comparison w PNJL model

Thank you for your attention!

- [1] P. Moreau, OS , L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, arXiv:1903.10157
- [2] OS, P. Moreau, E. Bratkovskaya, arXiv:1911.08547 [nucl-th].
- [3] OS, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, arXiv:2001.05395
- [4] OS, D.Fuseau, J.Aichelin, E.Bratkovskaya, arXiv:2011.03505

