The chemical freeze-out in a dynamical hadronic transport simulation

Tom Reichert¹, Gabriele Inghirami^{5,6}, Marcus Bleicher^{1,2,3,4}

 ¹ Institut für Theoretische Physik, Goethe-Universität Frankfurt
 ² GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt
 ³ John von Neumann-Institut für Computing, Forschungzentrum Jülich
 ⁴ Helmholtz Research Academy Hesse for FAIR, GSI Helmholtz Center, Campus Frankfurt
 ⁵ University of Jyväskylä, Department of Physics
 ⁶ Helsinki Institute of Physics

HIPSTARS - Workshop on Heavy Ion Physics and Compact Stars 2020 Contact: treichert@itp.uni-frankfurt.de, Eur.Phys.J.A 56 (2020) 10, 267 and arXiv:2011.04546

The chemical freeze-out

The chemical freeze-out

Cleymans & Redlich. Phys. Rev. Lett. 81, 5284-5286 (1998)

The chemical freeze-out

- Interpretation?
- In a non-relativistic system:

$$\langle E \rangle / \langle N \rangle \approx \langle m_{thermal} \rangle + \frac{3}{2}T$$

- SIS: nucleons at 50 MeV $\langle m_N \rangle + \frac{3}{2} \cdot 50 \, MeV \approx 1 \, GeV$
- SPS: Pions (bound in Rho) at 150 MeV

 $\langle m_{\rho} \rangle + \frac{3}{2} \cdot 150 \, MeV \approx 1 \, GeV$

Other criteria?

- Yes!
- $\frac{s}{T^3} = 7$

Cleymans, Oeschler, Redlich & Wheaton. Phys. Lett. B 615, 50-54 (2005)

• $n_B + n_{\bar{B}} = 0.12 \, fm^{-3}$

Braun-Munzinger & Stachel. J. Phys. G 28, 1971-1976 (2002)

•
$$n(T,\mu_B) = \frac{1.24}{V_h} \left[1 - \frac{n_B(T,\mu_B)}{n(T,\mu_B)} \right] + \frac{0.34}{V_h} \left[\frac{n_B(T,\mu_B)}{n(T,\mu_B)} \right]$$

Magas & Satz. Eur. Phys. J. C 32 115 (2003)

UrQMD

- Ultra-relativistic Quantum Molecular Dynamics
- Hadronic transport simulation
- Mesonic & Baryonic resonances up to 2 GeV
- Cross sections from experimental data
- Strangeness exchange reactions
- Very succesfull

The reconstruction

- Idea: $\pi + N \leftrightarrow \Delta$ doesn't affect π number!
- Find π at kinetic freezeout
- Look where it came from

Freeze-out times

• 5 fm: local max. 90 All created π Hidden π created in decay 80 Hidden π created in string Mostly strings ····· Visible π created in string 70 Some decays 60 Au+Au (UrQMD/cg) dN/dt [fm⁻¹] $\sqrt{s_{\rm NN}} = 19.6 \, {\rm GeV}$ 50 b ≤ 3.4 fm $|z| \le 5 \text{ fm}$ • 10 fm: bump 40 30 Decays & strings \succ E.g.: $N^* \rightarrow N + \rho$ 20 10 $\rightarrow N + \pi + \pi$ 15 20 0 5 10 25 t [fm]

T. Reichert, G. Inghirami, M. Bleicher @ HIPSTARS - Workshop on Heavy Ion Physics and Compact Stars 2020, Contact: treichert@itp.uni-frankfurt.de

30

Freeze-out times

- Above $\sqrt{s_{NN}} = 7 \text{ GeV}$ maxima centered at 5-7 fm
- Narrow distribution

Coarse graining

• Calculate energy-momentum tensor in cells with $\Delta x = \Delta y = \Delta z = 1$ fm and $\Delta t = 0.25$ fm/c

$$T^{\mu\nu}(t,\vec{r}) = \frac{1}{\Delta V} \left(\sum_{i=1}^{N_h \in \Delta V} \frac{p_i^{\mu} p_i^{\nu}}{p_i^0} \right)$$

- Calculate net-baryon current $j^{\mu}_{B}(t,\vec{r}) = \frac{1}{\Delta V} \left(\sum_{i=1}^{N_{h} \in \Delta V} B_{i} \frac{p^{\mu}_{i}}{p^{0}_{i}} \right)$
- 4-velocity from Eckart's frame definition $u^{\mu} = j^{\mu}_{B} \cdot \left(\sqrt{j^{\nu}_{B} j_{B,\nu}}\right)^{-1} = (\gamma, \gamma \vec{\nu})$

Coarse graining

- We obtain: $\rho_B = j_{B,LRF}^0$ & $\varepsilon = T_{LRF}^{00}$
- Rescale ε to account for pressure anisotropy

$$\varepsilon_{corr} = \varepsilon/r(\chi)$$
with $r(\chi) = \begin{cases} \frac{\chi^{-1/3}}{2} \left[1 + \frac{\chi \operatorname{artanh}(\sqrt{1-\chi})}{\sqrt{1-\chi}} \right] & \text{if } \chi < 1 \\ \frac{\chi^{-1/3}}{2} \left[1 + \frac{\chi \operatorname{arctan}(\sqrt{\chi-1})}{\sqrt{\chi-1}} \right] & \text{if } \chi > 1 \end{cases}$
and $\chi = (P_{\perp}/P_{\parallel})^{4/3}$

• Interpolate HRG EoS to obtain: $T(\varepsilon_{corr}, \rho_B), \mu_B(\varepsilon_{corr}, \rho_B)$

Freeze-out temperatures

- T_{max} & $\langle T \rangle$ saturate at 150 MeV
- Symmetric distribution above $\sqrt{s_{NN}} = 7 \text{ GeV}$
- FWHM $\approx 50~\text{MeV}$

Freeze-out baryo-chemical potentials

- $\langle \mu_B \rangle$ decreases with increasing $\sqrt{s_{_{NN}}}$
- Increasing \overline{B}/B ratio towards higher $\sqrt{s_{NN}}$

Energy dependence of $\langle T \rangle \& \langle \mu_B \rangle$

Energy dependence of $\langle T \rangle$ & $\langle \mu_B \rangle$

- $T_{chem} T_{kin} > 0$ implies that indeed $t_{chem} < t_{kin}$
- $\Delta T \approx 20 \pm 5$ MeV
- Saturation at 150 MeV (chem.)
- Saturation at 130 MeV (kin.)

Energy dependence of $\langle T \rangle \& \langle \mu_B \rangle$

- Both decrease rapidly
- $\mu_B \rightarrow 0$ MeV at LHC
- $\mu_B^{chem} \approx \mu_B^{kin}$

- Description good from SIS to RHIC
- But, UrQMD does
 neither involve a QGP
 nor a chem. break up
- How does this work?

Equilibrium \equiv scattering rate $\Gamma >$ expansion rate Θ

Knudsen number

$$Kn = \frac{\Theta}{\Gamma} \sim \frac{\partial_{\mu} u^{\mu}}{f_i f_j \sigma^{ij}}$$

- f: phasespace density
- \succ σ : inel. cross section
- ≻ u^µ: 4-velocity

Chemical freeze-out in UrQMD:

- ≻ Local interplay of Γ and Θ
- Not related to the phase transition from QGP to HG!
- Further evidence through freeze-out criteria

Average energy per particle

- In line with stat. model up to 20%
- Slight energy dependence
- Kinetic freeze-out also at 1 GeV/particle

Entropy density

- Effective d.o.f.
- s/T^3 (chem.) $\approx 6-7$ & s/T^3 (kin.) $\approx 4-5$ confirmed above $\sqrt{s_{NN}} = 7$ GeV
- Switch from baryondominated to mesondominated regime

Total baryon density

- $n_B + n_{\overline{B}}$ (chem.) ≈ 0.15 fm⁻³ confirmed above $\sqrt{s_{NN}} = 20 \text{ GeV}$
- Stronger energy dependence ... s/T³ and E/N better!

Summary

- Novel approach to determine the chemical freeze-out hyper-surface from a microscopic transport simulation
- Average chem. break up time: $\langle t_{chem} \rangle \approx 7$ fm/c
- $\langle T \rangle$ & $\langle \mu_B \rangle$ match stat. model results
- Chem. freeze-out is connected to scattering dynamics and not to deconfinement
- Confirm freeze-out criteria: E/N, s/T³ and $n_{B}+n_{\overline{B}}$

Backup – η/s

- η /s: shear viscosity to entropy density ratio
- Quantifies system's resoponse to shear perturbation
- Ideal fluid $\eta/s \rightarrow 0$
- RHIC: $\eta/s \rightarrow (4\pi)^{-1} \rightarrow QGP$ perfect fluid
- Usually extracted by fitting v₂ from hydrodynamics simulations to data
- Highly viscous hydrodynamics numerically not solvable

Backup – η/s

- Use UrQMD/cg to extract η /s at E_{lab}=1.23 AGeV
- Interpolate η/s(T) from Teslyk et al. Phys.Rev. C101 (2020) no.1, 014904

Backup – η/s

• Time evolution

Density dependence

Backup – η/s

- Energy dependence
- Low energies: η/s of a hadron gas
- High energies: η/s of a perfect fluid

Thank you for your attention!

Questions?

• treichert@itp.uni-frankfurt.de

Further reading:

- T. Reichert, G. Inghirami & M. Bleicher Eur. Phys. J. A 56 (2020) 10, 267
- T. Reichert, G. Inghirami & M. Bleicher arXiv: 2011.04546