

R

Introduction to the Gauge/Gravity Duality and its Application to Heavy-Ion Physics

Michael Florian Wondrak^{1,2} wondrak@itp.uni-frankfurt.de

¹ Helmholtz Research Academy Hesse for FAIR
 ² Institut für Theoretische Physik, Goethe-Universität Frankfurt

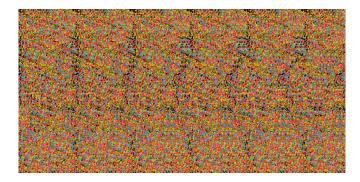
HIPSTARS – Workshop on Heavy Ion Physics and Compact Stars December 04, 2020

M.F. Wondrak, M. Kaminski, M. Bleicher, Phys. Lett. B811 (2020) 135973, 2002.11730 [hep-ph].
 M.F. Wondrak, M. Kaminski, M. Bleicher, Nucl. Phys. A1005 (2021) 121880, 2010.10575 [hep-ph].

 η/s near Equilibriun

 η/s far from Equilibrium

A Holographic Duality

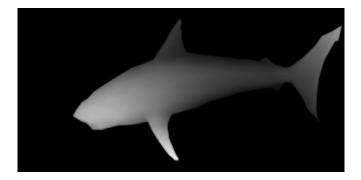


[https://upload.wikimedia.org/wikipedia/commons/8/8f/Stereogram_Tut_Random_Dot_Shark.png, accessed: 29 Nov 2020]

 η/s near Equilibrium

 η/s far from Equilibrium

A Holographic Duality



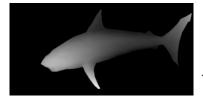
[https://upload.wikimedia.org/wikipedia/commons/3/3e/Stereogram_Tut_Shark_Depthmap.png, accessed: 29 Nov 2020]

 η/s near Equilibriu

 η/s far from Equilibrium

A Holographic Duality

Equivalent representations of the same information.



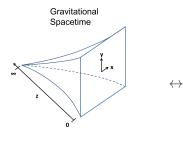
3-dim representation

\leftrightarrow 2-dim representation

[https://upload.wikimedia.org/wikipedia/commons/8/8f/Stereogram_Tut_Random_Dot_Shark.png, https://upload.wikimedia.org/wikipedia/commons/3/3e/Stereogram_Tut_Shark_Depthmap.png, accessed: 29 Nov 2020]

Gauge/Gravity Duality

Equivalent representations of the same information.

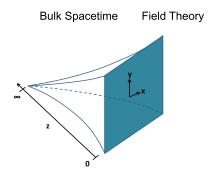


+ matter content

 $\begin{array}{ll} (d{+}1){-}{\rm dim} \ {\rm representation} \\ {\rm weakly} \ {\rm curved} \ {\rm SUGRA} \ {\rm spacetime} \end{array} \xrightarrow[large gauge rank \\ \end{array} \begin{array}{ll} d{-}{\rm dim} \ {\rm representation} \\ {\rm strongly} \ {\rm coupled} \ {\rm field} \ {\rm theory} \ {\rm at} \\ {\rm large} \ {\rm gauge \ rank} \end{array}$

Gauge/Gravity Duality

Field theory manifold can be identified with the conformal boundary of the bulk spacetime.



Nomenclature: Gauge/gravity duality aka holography aka AdS/CFT correspondence

Holographic Dualities Gaug

Two views on the same information: The gauge/gravity glasses!

Holographic Dualities	Gauge/Gravity Duality		6
000000			1

Outline

- Gauge/Gravity Duality
- Heavy-Ion Physics
 - Specific Shear Viscosity near Equilibrium
 - Specific Shear Viscosity far from Equilibrium

Holographic Dualities	Gauge/Gravity Duality		
	0000		

Gauge/Gravity Duality

- Dictionary: One-to-one map between operators *O* in the field theory and fields φ in the bulk spacetime (transforming in the same representation of the symmetry group).
- Boundary expansion (z = 0): $\phi(x, z) = \phi_{(0)}(x) z^{d-\Delta} + \phi_{(+)}(x) z^{\Delta} + \dots$
- Generating functional for connected *n*-point functions

$$W[J]|_{J=\phi_{(0)}} = S_{SUGRA}[\phi]|_{\lim_{z\to 0} (\phi(z,x)z^{\Delta-d}) = \phi_{(0)}(x)}$$

- Operator expectation value: $\langle O(x) \rangle_J = -\frac{\delta W}{\delta J(x)} \propto \phi_{(+)(x)}$
- Correlation functions: $\langle \mathcal{O}(x)\mathcal{O}(y)\rangle_J = -\frac{\delta^2 W}{\delta J(x)\delta J(y)} \propto \frac{\delta \langle \mathcal{O}(y)\rangle_J}{\delta J(x)}$

E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253; S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B428 (1998) 105; M. Ammon, J. Erdmenger, Gauge/Gravity Duality, 2015

ÎТР

10

Field Theory

R

Black *p*-Branes and Thermodynamics

• Thermal *n*-point-functions

Gauge/Gravity Duality

- \rightarrow Non-vanishing boundary energy-momentum tensor $\langle T^{\mu\nu}(x) \rangle_{g_{(0)}}$.
- \rightarrow Non-trivial bulk metric configuration.
- Black *p*-brane

Holographic Dualities

- Spatially extended black hole with a planar horizon topology.
- Spacetime still asymptotically AdS.
- Thermodynamic quantities of the field theory state and the black brane match:

		Black Brane
Field theory	Black brane	
Т	$T_{\rm H} = \kappa/2\pi$	
S	$S_{\rm BH}=A/4G$	
μ	$A_0 _{r \to \infty}$	
		r

E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505

Applications

Versatile tool, used e.g. in the areas of

- Information theory: Complexity and entanglement entropy, connection to tensor networks, ...
- Quantum gravity: Black hole entropy, black hole evaporation, ...
- Condensed matter physics: Characterization of new materials, topological insulators, superconductivity, ...
- Hydrodynamics:

magnetic fields, applicability (divergence of gradient expansion, non-hydro modes, critical momenta), thermalization, ...

• QCD & Heavy-Ion Physics:

access to the time-dependent non-dilute regime, QCD phase transition, jet quenching, quarkonium yields, elliptic flow,

Holographic Dualities	Gauge/Gravity Duality	η/s near Equilibrium			6
0000000	0000	0000	000000	000	2

Specific Shear Viscosity near Equilibrium

Hydrodynamics

- Effective field theory of conserved charges.
- Set of coupled equations: conservation equations and constitutive relations (energy-momentum tensor, currents). Closed by equation of state.
- Conventional validity regime: small frequencies and large wavelength (small Knudsen number), requires local thermodynamic equilibrium. However, in several cases violating these constraints, hydrodynamics yields correct results.

e.g. Landau, Lifschitz, Bd. VI Hydrodynamik, 2007; Baier et al., J. High Energy Phys. **04** (2008) 100; Kovtun, J. Phys. A: Math. Theor. **45** (2012) 473001; Ammon et al., J. High Energy Phys. **04** (2017) 067; Romatschke, Phys. Rev. Lett. **120** (2018) 012301; Grozdanov et al., Phys. Rev. Lett. **122** (2019) 251601; Heller et al., 2007.05524 [hep-th]; Baggioli, 2010.05916 [hep-th] Holographic Dualities

Transport Coefficients

• Constitutive relation for the energy-momentum tensor at first order in derivative expansion:

$$T_{\mu\nu} = T_{\mu\nu}^{\mathsf{IF}} + T_{\mu\nu}^{\mathsf{NIF}}$$

= $(\epsilon u_{\mu}u_{\nu} + P \Delta_{\mu\nu}) + (-\eta \sigma_{\mu\nu} - \zeta (\nabla_{\rho}u^{\rho}) \Delta_{\mu\nu} + \mathcal{O}(\nabla^{2}))$
with $\Delta_{\mu\nu} \equiv g_{\mu\nu} + u_{\mu}u_{\nu} \qquad \sigma_{\mu\nu} \equiv 2\nabla_{\langle \mu}u_{\nu \rangle}$

- Transport coefficients defined by fundamental theory, here: by the holographic field theory.
- Shear viscosity: Efficiency of transverse momentum diffusion. Local rest frame with u_x = v_x(y) ≪ 1:

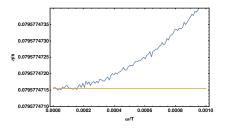
e.g. Landau, Lifschitz, Bd. VI Hydrodynamik, 2007; Baier et al., J. High Energy Phys. 04 (2008) 100

Near-Equilibrium η/s

- Holographic corresponding pair: g_{mn} , $\langle T^{\mu
 u}
 angle$
- Insert metric perturbation h_{xy} and solve linearized Einstein equations.
- Kubo formula for the shear viscosity from the retarded Greens function in frequency space:

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} \Im \left[G_{\mathsf{R}}^{\mathsf{x}\mathsf{y},\mathsf{x}\mathsf{y}} \left(\omega, \ \vec{k} = \mathbf{0} \right) \right]$$

• Normalization by entropy density (\sim number of degrees of freedom).



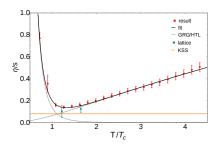
• Analytic result by Policastro, Son, Starinets: $\eta/s = 1/4\pi$ Policastro, Son, Starinets, Phys. Rev. Lett. **87** (2001) 081601

Near-Equilibrium η/s

- KSS value for gauge theories dual to Einstein-Hilbert theory, $\eta/s=1/4\pi\approx$ 0.08.
- Exceptions:

systems with anisotropy, finite gauge rank N, finite 't Hooft coupling.

• Temperature-dependent calculation of η/s for quark-gluon plasma from lattice QCD (blue) and functional renormalization group (red).



Kovtun, Son, Starinets, Phys. Rev. Lett. 94 (2005) 111601; Christiansen et al., Phys. Rev. Lett. 115 (2015) 112002

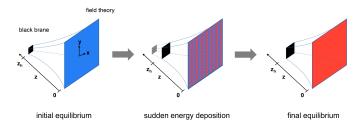
Holographic Dualities	Gauge/Gravity Duality	η/s far from Equilibrium	
		000000	

Specific Shear Viscosity far from Equilibrium

- Consider shear transport far from equilibrium.
- Challenges:
 - Out of local thermodynamic equilibrium
 → Generalize the definition of *s*.
 - No time translation symmetry
 - \rightarrow Generalize the definition of $\eta.$

Far from Equilibrium in Bulk and Boundary ightarrow s

 \Rightarrow Calculate the effective η/s for far-from-equilibrium systems, especially for the heating-up phase in a collision.



- Sudden energy deposition @ boundary
 ↔ Rapid mass infall (Reissner-Nordström Vaidya spacetime).
- Holographic equation of state \rightarrow time-dependent *s*.

M.F. Wondrak et al., Nucl. Phys. A1005 (2021) 121880

Far-from-Equilibrium Model

• Theory (bulk): Einstein-Maxwell:

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{16\pi G_N} \left(R + 6 \right) - \frac{1}{4} F^{mn} F_{mn} \right) + S_{\text{matter}}$$

 Configuration: Highly concentrated matter infall into black brane, presence of U(1) gauge field. Arbitrary functions M(v) and Q(v).

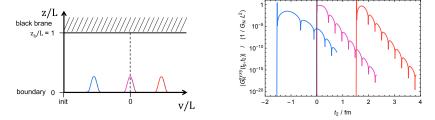
$$ds^{2} = \frac{1}{z^{2}} \left(-f(v, z) dv^{2} - 2 dv dz + dx^{2} + dy^{2} \right)$$
$$A(v) = (\mu(v) - Q(v) z) dv$$
$$f(v, z) = 1 - 2G_{N} M(v) z^{3} + 4\pi G_{N} Q(v)^{2} z^{4}$$
$$\Delta M \propto 1 + \tanh(v/\Delta t)$$

 v denotes the ingoing Eddington-Finkelstein coordinate. It coincides with t at the boundary.

V. Balasubramanian et al., J. High Energy Phys. 04 (2013) 069; E. Caceres et al., J. High Energy Phys. 01 (2014) 084; S. Banerjee et al., J. High Energy Phys. 08 (2016) 048; M.F. Wondrak, Phys. Lett. B811 (2020) 135973

System Response to Perturbations $ightarrow \eta$

• Bulk: Evolution of the geometry perturbation h_{mn} . \rightarrow Boundary: Damped oscillations of $\langle T^{\mu\nu} \rangle$.



 η/s far from Equilibrium

• Linear response:

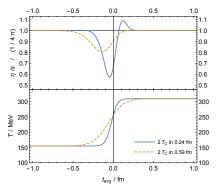
$$\langle T^{xy}(t_2) \rangle_h = \int d\tau \ G_R^{xy,xy}(\tau, t_2) \underbrace{h_{xy}^{(0)}(\tau)}_{=\delta(\tau-t_p)} = G_R^{xy,xy}(t_p, t_2)$$

- Wigner transformation \rightarrow Kubo formula \rightarrow time-dependent η .
- M.F. Wondrak et al., Nucl. Phys. A1005 (2021) 121880

Far-from-Equilibrium η/s : Time Dependence

Typical RHIC temperature rise:

 $T=155\,{
m MeV}
ightarrow\,T=310\,{
m MeV}$ over $\Delta t=0.3\,{
m fm}.$



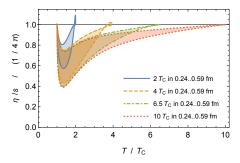
- Shorter heating-up time: smaller & more pronounced minimum.
- Shorter heating-up time: overshoot.

Adare et al. (PHENIX), Phys. Rev. **C81** (2010) 034911; M.F. Wondrak et al., Nucl. Phys. **A1005** (2021) 121880; M.F. Wondrak, Phys. Lett. **B811** (2020) 135973

Holographic Dualities Gauge/Gravity Duality η/s near Equilibrium η/s far from Equilibrium Conclusions

Far-from-Equilibrium η/s : Temperature Dependence

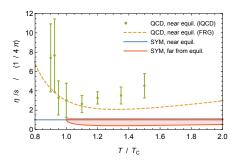
Regime relevant to heavy-ion collisions at RHIC and LHC:



- Universal trend in $\eta/s(T)$.
- Impact of temperature increase saturates.
- Time span is the dominant out-of-equilibrium parameter to determine minimum value.

M.F. Wondrak, Phys. Lett. B811 (2020) 135973

Many efforts from lattice QCD and FRG to determine the shear viscosity being a key property of the QGP in the hydrodynamic phase.



Reduction of η/s is a general trend as found in holography (e.g. in presence of anisotropies) and effective kinetic theory (higher order viscous corrections).

Romatschke, Phys. Rev. Lett. **120** (2018) 012301; Denicol, Noronha, Phys. Rev. Lett. **124** (2020) 152301; Behtash et al., Phys. Lett. **B797** (2019) 134914; Rebhan, Steineder, Phys. Rev. Lett. **108** (2012) 021601

Conclusions and Outlook

- Holographic calculation of η/s far from equilibrium by strong time dependence.
- Marked modification of η/s by -60%/+10% in the regime relevant for RHIC and LHC.
- Impact on the simulation of heavy-ion collisions and on the extraction of viscosity from data.
- Applicability of this procedure to further holographic setups and further transport coefficients.

Holographic Dualities 0000000 Gauge/Gravity Duality

 η/s near Equilibri

 η/s far from Equilibrium

Conclusions

The Hipstaers' View

Equivalence of descriptions

Boundary field theory: Highly excited strongly coupled plasma

Bulk spacetime: Matter infall at the speed of light

Holographic Dualities	Gauge/Gravity Duality		Conclusions	R
			000	<u>zez</u>

When looking through the gauge/gravity glasses ...

... do you have questions?

