Collective flow of light nuclei in $\mathrm{Au}+\mathrm{Au}$ reactions at 1.23 A GeV

Paula Hillmann

Institut für theoretische Physik, Goethe-Universität Frankfurt GSI, Darmstadt
Helmholtz Research Academy Hesse for Fair, Frankfurt
Forschungszentrum Jülich

Content

- Introduction
- Motivation
- Collective flow
- UrQMD model
- Equation of state
- coalescence formailsm
- Results
- direct and elliptic flow
- Mass number scaling
- Summary

Motivation

- At low energy Au+Au collisions baryon density is $3-4$ times higher than the ground state density can be reached. One expects to find exotic particles or maybe even super conducting matter and a phase transition to the Quark Gluon Plasma.

picture: https://www.researchgate.net/figure/ A-possible-sketch-of-the-QCD-phase-diagram_fig3_ 269116454

Motivation

- The HADES experiment performed Au+Au collisions at E lab $=1.23 \mathrm{~A} \mathrm{GeV}$ with a huge amount of data and is able to measure even flow components of light nuclei with a high precision.
- The dynamics of this dense matter are sensitive to the initial density and potential interactions and therefore the nuclear equation of state (EoS).

Collective flow

- Being sensitive to initial pressure gradients the collective flow is a promising variable to study the EoS. It is given as the Fourier series of the momentum distribution:
(1) $E \frac{d^{3} N}{d^{3} p}=\frac{1}{2 \pi} \frac{d^{2} N}{p_{\mathrm{r}} d p \mathrm{~d} d}\left(1+2 \sum_{n=1}^{\infty} v_{n} \cos \left[n\left(\varphi-\Psi_{\mathrm{RP})}\right]\right)\right.$
- The different coefficients are then niven hv the corresponding integral:
(2) $\quad v_{n}\left(p_{\mathrm{T}}, y\right)=\langle\cos [n \varphi]\rangle$
picture: Heinz, Ulrich W. J.Phys. A42 (2009) 214003

UrQMD

- UrQMD is based on a geometrical interpretation of the Nuclear cross section. A reaction occurs, when:
(3) $d<\sqrt{\frac{\sigma}{\pi}}$
- The model includes strangeness exchange, and resonance and string dynamics
- At low beam energies the equation of state has a huge effect to the dynamics
S. A. Bass et al. Prog. Part. Nucl. Phys. 41 (1998) 225-370,
M.Bleicher et al. J. Phys. G: Nucl. Part. Phys. 25 (1999) 1859-1896

Equation of state

- In the following the potentials of the EoS are shown.
- Yukava-potential for strong interaction:
$\begin{array}{ll}\text { (4) } \quad V_{Y}^{i j}=V_{0}^{Y} \cdot \frac{\exp \left(\left|\mathbf{r}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}\right| / \gamma_{Y}\right)}{\left|\mathbf{r}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}\right|} & \begin{array}{l}V_{0}^{Y}=-0.498 \mathrm{MeV} \\ \gamma_{Y}=1.4 \mathrm{fm}\end{array}\end{array}$
- Coulomb-potential for electromagnetic int.:
(5) $v_{C}^{i j}=\frac{Z_{i} Z_{j} e^{2}}{\left|\mathbf{r}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}\right|}$

Equation of state

- Skyrme-potential for density abundance:
(6) $V_{\text {sk }}=\alpha \cdot\left(\frac{\rho_{\text {itu }}}{\rho_{0}}\right)+\beta \cdot\left(\frac{\rho_{\text {int }}}{\rho_{0}}\right)^{\gamma}$
- The paramters α, β, and y describe the siffness of the EoS.
- We use a hard EoS with the following parameters:
P.Hillmann et al., J.Phys. G45 (2018) no.8, 085101 (2018-06-25)

Parameters	hard EoS
$\alpha[\mathrm{MeV}]$	-124
$\beta[\mathrm{MeV}]$	71
γ	2.00

Phase-space coalescence

- A possible two-particle state is formed if the relative distance $\Delta r<3.575 f m$ and momentum difference $\Delta \mathrm{p}<0.285 \mathrm{GeV}$.
- If this possible pair is in the same distances to another nucleon, a 3 N -cluster is formed with the factor of $1 / 4$ (average over initial spin-and isospin states) .
- For the deuteoron the corresponding factor is 3/8.

Deuterons: S.Sombun et al., Phys.Rev. C99 (2019) no.1, 014901 (2019-01-10)

Results on directed flow

- Strong raṕidity and transverse momementum dependence.
- The higher the mass the more negative the flow at high pT .

HADES Data:B. Kardan et al., PoS CPOD2017 (2018) 049 and Nucl.Phys. A982 (2019) 431-434

Results on elliptic flow

- Strong rapidity and transverse momentum dependence.
- Direct mass number scaling as indicator of coalescence HADES Data:B. Kardan et al., PoS CPOD2017 (2018) 049 and Nucl.Phys. A982 (2019) 431-434

Higher order flow components

- Strong rapidity and transverse momentum dependence.
- Non-0 higher order flow indicates interplay of initial and expansion stage of the system.

Scaling of v4 and v2

- Strong transverse momentum dependence.
- Scaling of the harmonics both for transverse momentum and energy at mid-rapidity.

Summary

- UrQMD with a non-momentum dependent hard EoS and a coalescence approach was used to study collective flow of light nuclei in $\mathrm{Au}+\mathrm{Au}$ reactions at 1.23 AGeV
- Cluster formation shows an impact to the collective flow. The mass number scaling indicates coalescence.
- Non-vanishing higher order flow indicates interplay between initial stage and expansion.

