

XLS –Injector layout update

C. Vaccarezza

C. Vaccarezza

Third CompactLight Annual Meeting, Nov 20-25 2020

From Last meeting (Glasgow virtual)

- The energy of 300 MeV has been accepted as the BC1 entrance energy both at Low and High repetition rate, provided by 10 C-band sections at $E_{acc} = 15 \ MV/m$.
- This study focuses on the replacement of the last 6 C-band sections with 8 X-band upstream BC1, even in this case at lower accelerating field i.e. $E_{acc} = 30 MV/m$ to guarantee the operation at 1kHz rep rate
- NB the same consideration holds for the K-band sections, i.e. the applied field is considered at high repetition rate (feasible?)

European Union

- One injector for all the operational modes (HRR and LRR)
 - > 2.5 C-band gun with 160 MV/m cathode peak field => longer drift for diagnostics
 - > Copper cathode and TiSa Laser
 - Same gradients 15 MV/m in the 2 m long C-band structures, max gain 30 MeV/structure
 - Same diagnostics positions (@ gun exit 7 MeV and in the drift parallel to the LH @ 120 MeV)
 - > Same beam parameters at the linac exit
 - > Matching with LH to be determined

- Optimal BC1 input energy (=> and position) to be determined
 - Without Velocity Bunching
 - With Laser Heater less than 2 m long
 - K-band Linearizer just before the BC1, X-band RFD downstream BC1
 - > Same beam parameters at the BC1 exit

C. Vaccarezza

Third CompactLight Annual Meeting, Nov 20-25 2020

www.CompactLight.eu

Funded by the European Union

More in detail:

C. Vaccarezza

Third CompactLight Annual Meeting, Nov 20-25 2020

Funded by the European Union Usual check on calculated

and applied wakes: X-band

Usual check on calculated European Union

and applied wakes: K-band

Compact

Funded by the European Union With CSR on:

BC1 exit: R₅₆= -20.6 mm, T₅₆₆ = 31 mm

C. Vaccarezza

Third CompactLight Annual Meeting, Nov 20-25 2020

www.compactignt.du

ີ້ 150 ຈໍ້

		6 C-band 15 MV/m (1 kHz)	<mark>8</mark> X-Band 32 MV/m (1 kHz)
Effective Accelerating Length	$L_{acc}^{eff}(m)$	11.4	7.2
Current	I(A)	300	300
Bunch length rms BC1 exit	$\sigma_{z} (\mu m)$	26	19
Slice Hor Norm Emittance	$\varepsilon_{nx} (\mu m)$	< 0.1	~ 0.1
Energy before BC1	E(MeV)	275	323

C. Vaccarezza

Third CompactLight Annual Meeting, Nov 20-25 2020

www.CompactLight.eu

Funded by the European Union COMPARISON:

Not suitable for 300

Funded by the European Union COMPARISON:

6X-band - BC1 exit:

C. Vaccarezza

Third CompactLight Annual Meeting, Nov 20-25 2020

www.CompactLight.eu

European Union

Funded by the European Union

- One injector for all the operational modes (HRR and LRR)
 - > 2.5 C-band gun with 160 MV/m cathode peak field => longer drift for diagnostics
 - > Copper cathode and TiSa Laser
 - Same gradients 15 MV/m in the 2 m long C-band structures, max gain 30 MeV/structure
 - Same diagnostics positions (@ gun exit 7 MeV and in the drift parallel to the LH @ 120 MeV)
 - > Same beam parameters at the linac exit
 - > Matching with LH to be determined

- Optimal BC1 input energy (=> and position) to be determined
 - Without Velocity Bunching
 - \succ With Laser Heater less than 2 m long
 - ➢ K-band Linearizer just before the BC1, X-band RFD downstream BC1
 - > Same beam parameters at the BC1 exit

Conclusions

- The replacement of 6 C-band sections with 8 X-band ones does not show obstacles from first simulations, even though the R₅₆ is higher right now but this can be optimized in the next
- From the last XLS-Injector meeting held on Nov 2th 2020, a request came out to come back to the VB scheme in the Phoinjector now equipped with the 2.6 cells RF GUN. We foresee to finalize the PI-WP by the end of December 2020, provided the due simulation iterations with WP6.
- Furthermore the insertion of the adopted K-band structure will be done, according with the outcome of the last XLS-Linearizer Review meeting held on Nov 17th 2020
- Benchmark with also SC effect up to the BC1 exit to be done

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

