

General overview of WP4 status (not review of this meeting nor technical summary). Activities still underway in red, highlights in blue:

- Linac rf unit:
 - Baseline defined, all major parameters fixed aligned with EuPRAXIA, becoming standard
 - Combined rf and beam dynamics optimization completed
 - Pulse compression and rf network defined
 - Dual-mode-source operation established: 100 Hz 65 MV/m and 1 kHz 30 MV/m
 - Power sources defined
 - Stimulated strong response of klystron and modulator industrial partners (Canon and CPI), major impact already of our design study, new devices in commercial pipeline
 - Thermal issues under study (two steady state operating conditions)
 - Dual-bunch operation
 - Long-range wakefield suppression through detuning optimized
 - Accelerating structure mechanical and thermal design
 - Structure is important cost and performance driver
 - Direct participation of industrial partner VDL
 - Brazing method chosen, tolerances being established, parameterized drawings, coupler design, ongoing
 - Industrialization studies ramping up
 - Activity will continue with construction of two structures in COMPAS of I-FAST

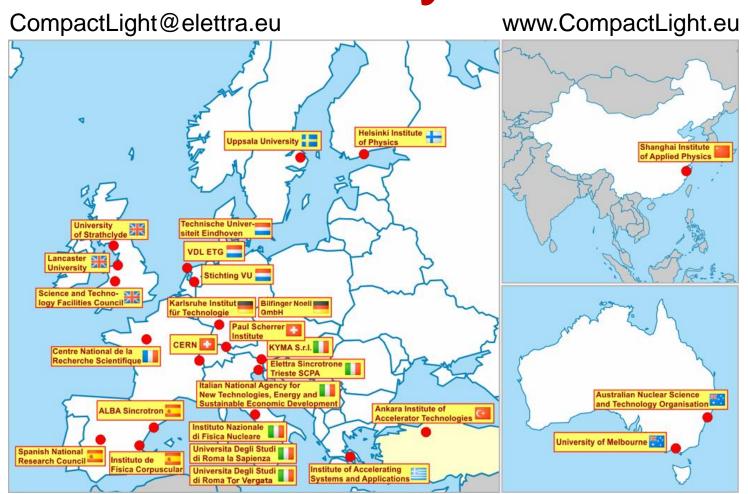
Other major rf systems:

- Sub-harmonic (3 GHz) separator for two-bunch operation
 - Baseline established
 - rf structure chosen and designed
 - Power source and waveguide distribution system defined
- Harmonic linearizer system (36 GHz) frequency may become important tool in the future
 - Baseline established
 - Parameters established with injector and beam dynamics, iteration underway
 - Power source feasibility established to level of simulation
 - Gyroklystron
 - Multi-beam klystron
 - Partnership with industry and funding needed for step up to prototypes
 - Pulse compressor and waveguide distribution established
 - Structure established
 - 30 cm, 2 mm radius aperture travelling wave baseline
 - Standing wave alternative

Other aspects of the linac:

- Integration
 - Three module types identified with 4, 2 and 1 quadrupole per module
 - Longitudinal space reservations established
 - Ongoing iterative work with hardware experts from outside of WP4. We get by with a little help from our friends...
 - Quadrupoles
 - Support and alignment
 - Vacuum
- Instrumentation happy to see creation of WP8!
 - Wakefield monitors are not part of baseline, but will be described as an option/alternative
 - Will work with WP8 and 6 on specification of POLARIX systems
- Costing and power consumption
 - Initiatives launched inside of WP4 now being carried out CompactLight-wide

Deliverable writing:


- D4.2 Design of linac rf unit, has become Design of CompactLight linac and specialized rf systems
- D4.3 The linac accelerating structure: rf, mechanical and thermal design. Industrialization
- Schedule:
 - "Zero-version" draft mid December
 - Complete first draft end January
 - Edited draft end February
 - Submission to EU end March

Thank you!

BILFINGER

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431. ANSTO MELBOURNE Science and Technology Facilities Council Lancaster 🎇 University TU/e Technische Universiteit Eindhaven University of Technology CERN INFN SINAP UPPSALA UNIVERSITET ch, CERN Centre National de la Recherche Scientifique Compactl KY~~~ SAPIENZA UNIVERSITÀ DI ROMA ENEL TOR VERGATA HELSINKI INSTITUTE OF PHYSICS ALBA