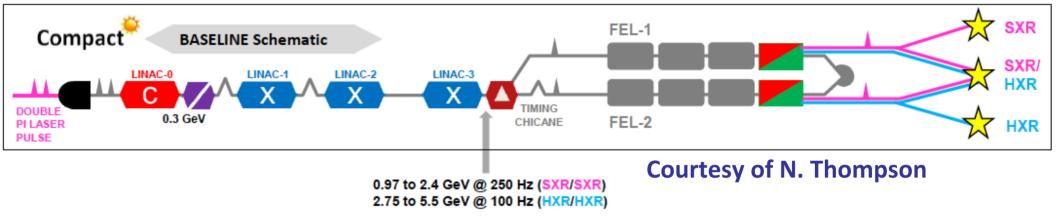


WP5 Summary Report

3rd CompactLight Annual Meeting (a.k.a. 2nd Virtual Glasgow) – November 24th 2020

F. Nguyen on behalf of the WP5



Baseline Layout

'Dual Mode Linac' – single linac, single klystron

Both Soft and Hard X-Ray configurations foresee a SASE line based on Helical SCUs plus an Afterburner line based on Apple-X undulators

As shown by V. Goryashko and discussed at the last WP5 meeting, attaining variable polarisation by means of optical HXR manipulation is highly inefficient \rightarrow deemed too risky for a User Facility!

Fixing the SCU parameters (from	N. Thompson	i)				
15 mm gives too long saturation le better performance in SXR from 0	0					
11 mm gives marginally better per	rformance 8 ke	V to 16 keV	1			
13 mm gives nearly double the put compared to 11 mm with only a sin energy and saturation length				Courtesy o	of A. Ber	nhard
 13 mm looks the best choice Then the AB parameters (from N. Thompson) 	period leng length (inc magnetic g beam pipe a _w (8 keV) a _w (16 keV	Undulator (SC helical) period length (refined) length (incl. matching periods) magnetic gap (refined) beam pipe bore diameter a_w (8 keV) a_w (16 keV)			mm mm mm	13 1755 4.2 3 1.33 0.617
If we take 13mm as undulator	$B_{\rm max}$ on a	$B_{\rm max}$ on axis			Т	1.09
the same tuning range is	Min Gap	3 mm	4mm	Final decision assessing the		Itput
and dame tarmy range, not	Period	18mm	19mm			

1.96

0.68

1.75

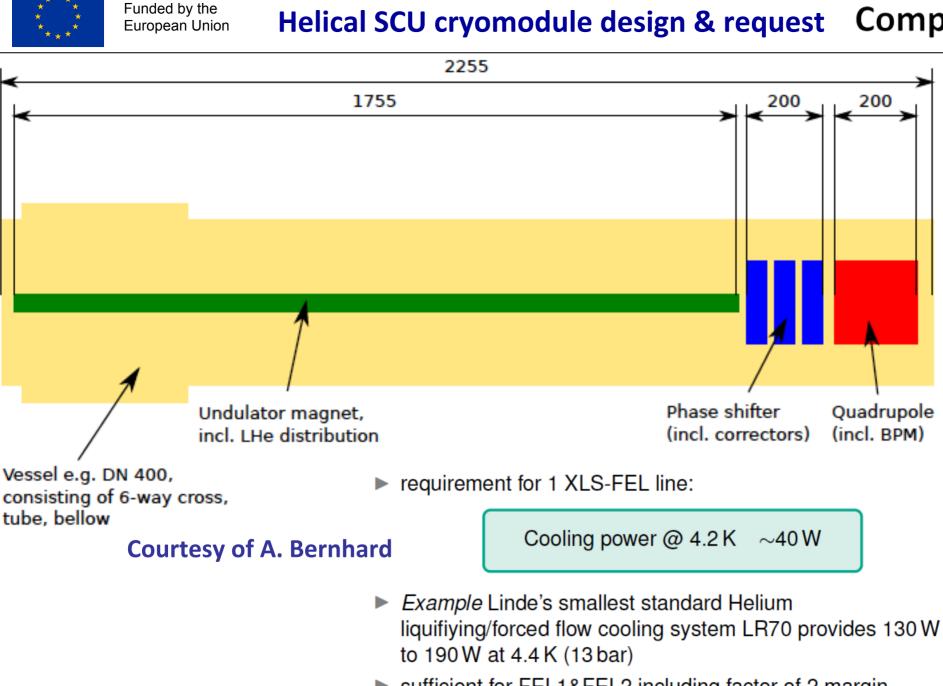
0.62

a_w @ 650 eV

a_w @ 2 keV

And after SXR vs. HXR trade-off (from H.M.C. Cortes)

ENEN


650eV to 2keV @ 2.36GeV

Funded by the

European Union

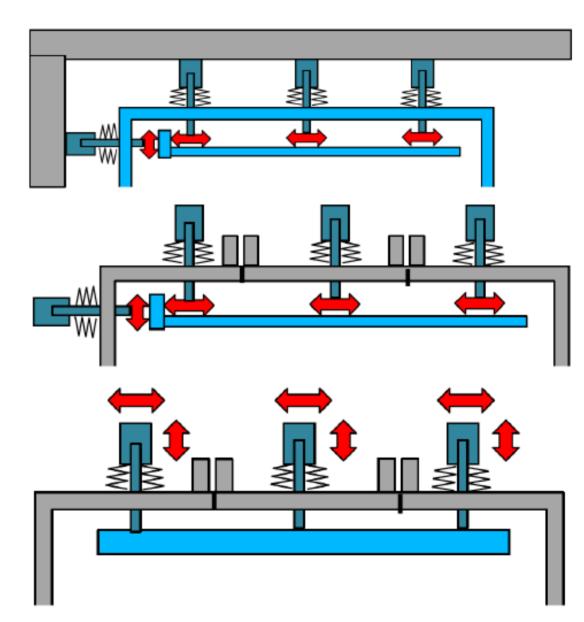
Helical SCU cryomodule design & request Compact

sufficient for FEL1&FEL2 including factor of 2 margin relaxing cryostat design requirements

Δ

- Stage 1: 30 cm model, 13 mm period
- Design work carried out at Daresbury to optimize turnarounds and correctors
- Winding trials ongoing at RAL
- Full former wound with copper wire →
- Work starting on winding with SC wire ↓

Courtesy: Ben Shepherd

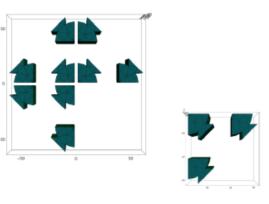

- Development directions proposed by Thomas Schmidt (WP5)
- Provisional set of undulator parameters

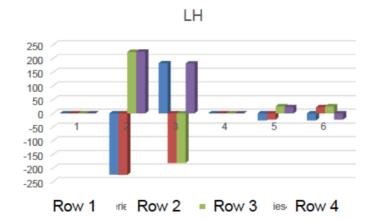
Funded by the

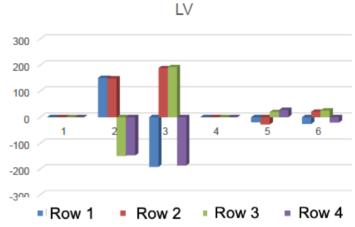
European Union

- Three possible solutions for Radial and Phase Motion realization
 - 1. Fixed frame, traditional VC
 - Segmented VC as support structure, separate radial and phase motion
 - Segmented VC as support structure, combined radial and phase motion

Courtesy of T. Milharcic

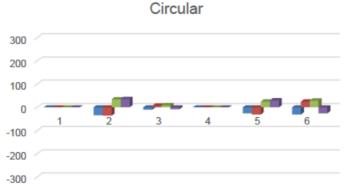



Forces compensation on a single row



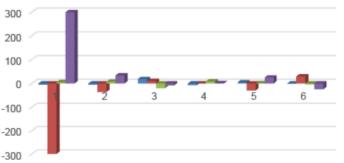
Funded by the

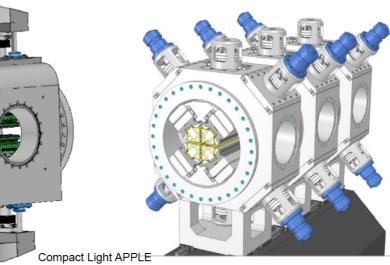
European Union


Force compenstion

- · works in all modes
- does not change in major operation modes
- is the key to compact design

Courtesy of T. Schmidt


Synergy with SLS 2.0



PSI planar

inclined 45°

A big warm thank you to all WP5 collaborators for their contributions during these hard times!

SASE line: parameters and main concept are in place, a lot of progress on
 Quadrupoles
 Phase shifters

AB line: main design solution proposed, have
 to fix the AB undulator parameters to make both
 HXR and SXR fulfill WP2 FEL performance
 To do by March 31st

Write !

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

