

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Jet Observables - Exploratory Survey Strong 2020 Jet Observables Workshop 20th November 2020

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093."

STRONG

Miguel Crispim Romão mcromao@lip.pt

Fundação para a Ciência e a Tecnologia **Lisb@2(**

PORTUGAL 2020

Outline

Simulation Setup and Details

Simulation Setup

- Jewel 2.2.0
- LHAPDF 5.9.1
- Docker image publicly available at
 - <u>https://hub.docker.com/r/mcromao/jewel</u>
 - Dockerfile: https://github.com/Strong2020-JetQGP/dockerfiles

• Usage examples:

- docker run --rm -v \$PWD:\$PWD -w \$PWD --user \$(id -u):\$(id -g) mcromao/jewel:latest jewel-2.2.0-simple
- docker run --rm -v \$PWD:\$PWD -w \$PWD --user \$(id -u):\$(id -g) mcromao/jewel:latest jewel-2.2.0-simple my_card.dat

Simulation **Details**

- 320k events of both vacuum and simple (medium) simulation
- Kinematics:
 - CM Energy = 5020 GeV
 - PTMIN = 40 GeV
 - PTMAX = 250 GeV
 - ETAMAX = 2.5
 - No recoils
- Medium:
 - \circ TAUI = 0.4 fm/c
 - TI = 440 MeV
 - TC = 170 MeV
 - Centrality = 0-10%

The Observables

The Observables Jet 4-momentum

- Computed from the reconstructed anti-kt jets
 - o η(eta)
 - ο φ(phi)
 - p_T(pt)
 - Mass (mass)
- And the number of constituents nconst

The Observables $\lambda_{\beta}^{\kappa} = \sum_{i \in \text{jet}} z_i^{\kappa} \left(\frac{\Delta R_{i,\text{jet}}}{R_0}\right)^{\beta} \Delta R_{i,j} = \sqrt{(\phi_i - \phi_j)^2 + (\eta_i - \eta_j)^2}$ Angularities 1408.3122

к	β	Expression	In Code	Comments
0	1	$\frac{1}{N_{const}} \sum_{i} \Delta R_i$	mr	$\frac{1}{N_{const}}$ for mean
0	2	$\frac{1}{N_{const}} \sum_{i} \Delta R_{i}^{2}$	mr2	$\frac{1}{N_{const}}$ for mean
1	1	$\sum_i z_i \Delta R_i$	rz	Also known as g
1	2	$\sum_i z_i \Delta R_i^2$	r2z	
2	0	$\frac{1}{N_{const}} \sum_{i} z_i^2$	mz2	p _⊤ D = N _{const} √mz2

The Observables Subjettiness 1011.2268

$$\tau_N = \frac{\sum_{i=1}^N p_T^i \min(\Delta R_{1,i}, \dots, \Delta R_{N,i})}{R_0 \sum_{i=1}^N p_T^i}$$
$$\tau_{N,N-1} = \frac{\tau_N}{\tau_{N-1}}$$

- As implemented by fastjet-contrib Nsubjettiness
- N=1,...5 for t (tau1,..., tau5)
- T_{2.1}, T_{3.2} (tau2tau1, tau3tau2)

The Observables Jet Charge 1209.2421

$$Q_{\kappa} = \sum_{i \in jet} z_i^{\kappa} Q_i$$

- Following CMS we used kappa = 0.3, 0.5, 0.7, 1.0
 - jetcharge03, jetcharge05, jetcharge07, jetcharge10

The Observables Soft-Drop quantities 1402.2657

Implemented by fastjet-contrib
RecursiveTools
w/ zcut = 0.1 and beta = 0 (mMDT)

 Recursively declusters the Jet branching history and discards the resulting sub-jets until the current splitting fulfills the SD condition

$$\frac{\min[p_{T,i}, p_{T,j}]}{p_{T,i} + p_{T,j}} > z_{cut} \Delta R_{i,j}$$

- This defines three observables
 - n_{sp} (nSD) number of splits until condition is met
 - z_g (zg) fraction of the momentum of least energetic subject at splitting where condition is met
 - R_g (Rg) the radial separation at the splitting where the conditions is met

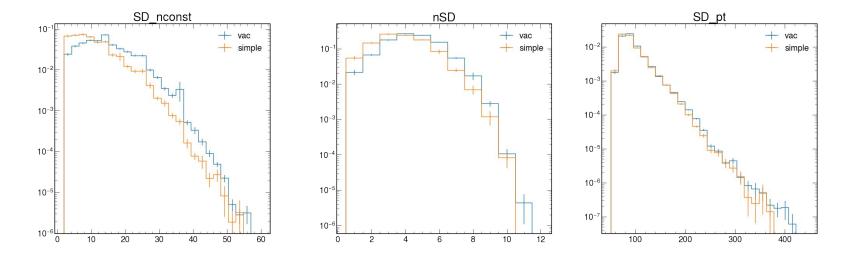
The Observables Dynamical Grooming quantities 1911.00375

• Implementation adapted from Alba Soto-Ontoso's code

$$\kappa^{(a)} = \frac{1}{p_{T,jet}} \max_{i \in C/A \text{ seq}} \left[z_i (1 - z_i) p_{T,i} \left(\frac{\Delta R_i}{R_0} \right) \right]$$

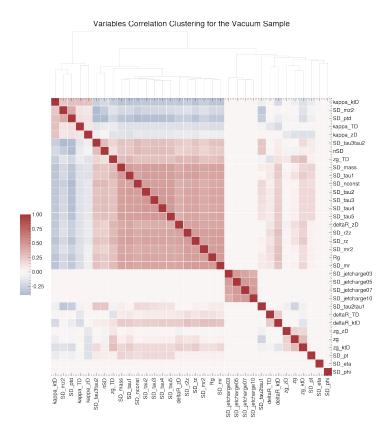
- Three interesting possibilities for a
 - a=2 TimeDrop
 - a=1 kTDrop
 - a=0 zDrop (a=0.1)
- Just like SD, this defines observables $z_g^{},\,R_g^{}$ for each possibility and the value of κ
 - deltaR_TD/ktD/zD, kappa_TD/ktD/zD, zg_TD/ktD/zD

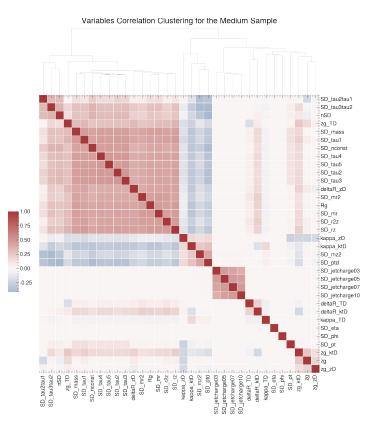
The Observables Summing up

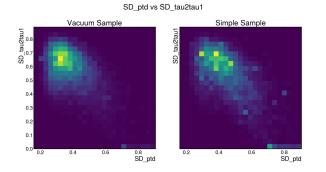

- 4-momenta
 - $\circ\,$ eta, phi, pt, mass, nconst
- Angularities
 - \circ mr, mr2, rz, r2z, mz2, ptd
- Subjetiness
 - tau1, …, tau5, tau3tau2, tau2tau1
- Jet Charges
 - jetcharge03, jetcharge05, jetcharge07, jetcharge10
- Soft-Drop Quantities
 - \circ nSD, zg, Rg
- Dynamical Grooming Quantities
 - \circ kappa, zg, Rg (for a=2,1,0)

Exploratory Data Analysis

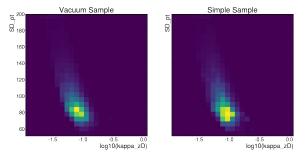
Exploratory Data Analysis Preliminaries

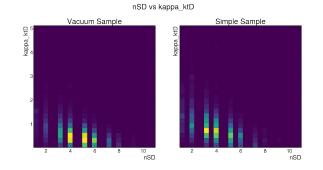

- Jets were reconstructed with anti-kt (R=0.4) using fastjet
 3.3.4
 - Full jets without subtraction
- A docker image with all required dependencies is available
 - <u>https://hub.docker.com/r/mcromao/processors</u>
- Per Jet observables saved to a TTree
- Analysis is done after we process the HEPMC into the ROOT TTree
- For the analysis:
 - Quantities computed with the SD groomed version of jet
 - \sim $p \sim 00$ Coll and D_{a} $z_{a} \sim 0$ (drapped CD untagged into)


Exploratory Data Analysis Some distributions

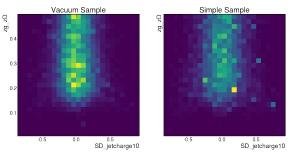

33 variables => Need more systematic way of studying them and their relations

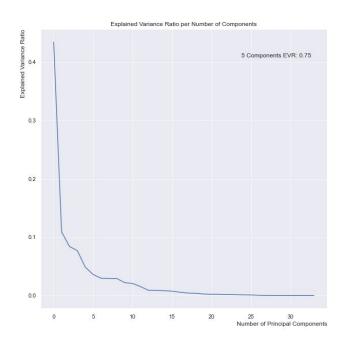
Exploratory Data Analysis: Correlations

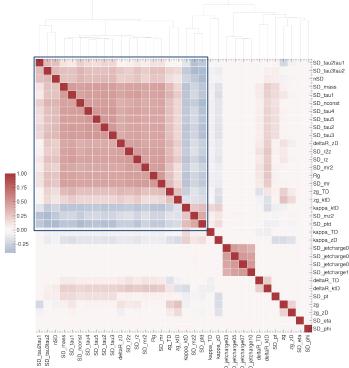


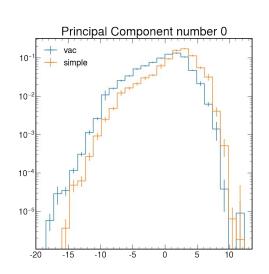


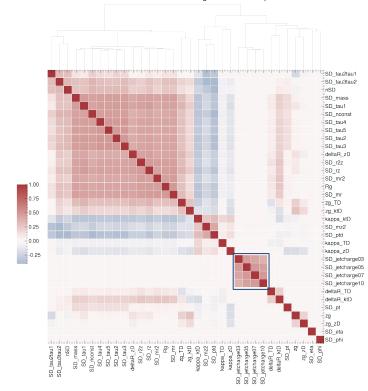
Exploratory Data Analysis: Correlations Some 2d histograms

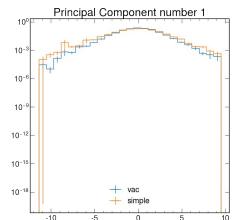


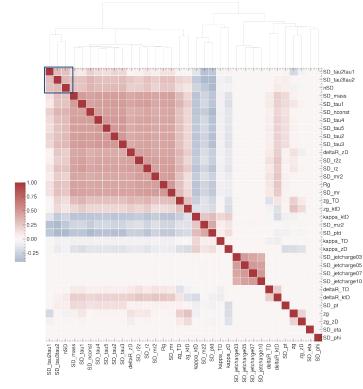


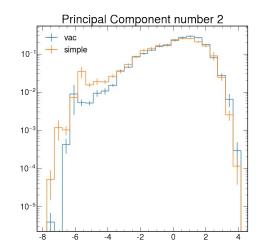


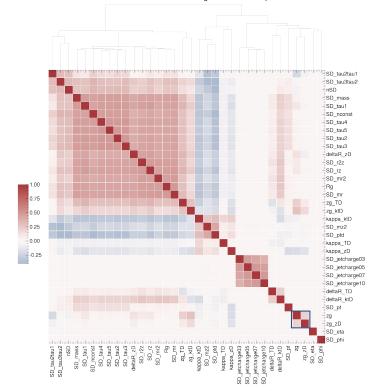


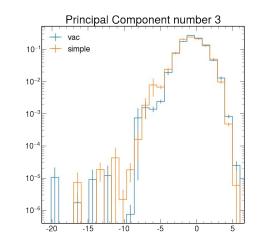

- Clustering over the covariance matrix suggests most of the variables are fairly collinear
 - Perform Principal Component Analysis: disentangle linear correlations
 - How many Principal
 Components are there?
 - 75% of the covariance is explained by only 5 components



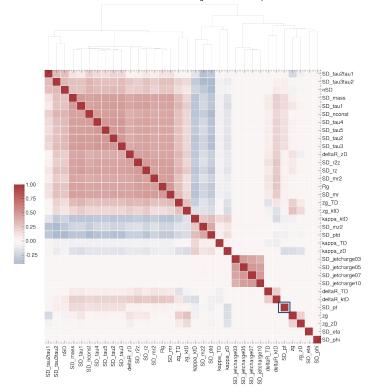

	Component 0	
	SD_ptd	0.202301
	kappa_ktD	0.194061
	SD_mz2	0.144330
-03 -05 -07	zg_ktD	-0.124228
	nSD	-0.169223
	SD_tau3tau2	-0.172789
	zg_TD	-0.186161
	SD_mr2	-0.224263
	deltaR_zD	-0.225578
	SD_r2z	-0.233269
	Rg	-0.237735
	SD_mr	-0.241182
	SD_tau5	-0.245185
	SD_nconst	-0.245295
	SD_tau1	-0.245703
	SD_mass	-0.246122
	SD_tau2	-0.246489
	SD_rz	-0.246701
	SD_tau4	-0.247284
	SD_tau3	-0.248432

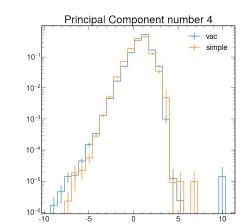


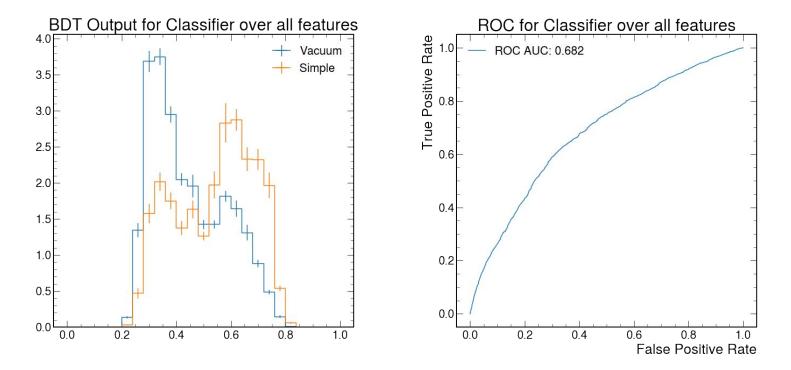

Component 1	
SD_jetcharge03	-0.474703
SD_jetcharge10	-0.490372
SD_jetcharge07	-0.512734
SD_jetcharge05	-0.516057



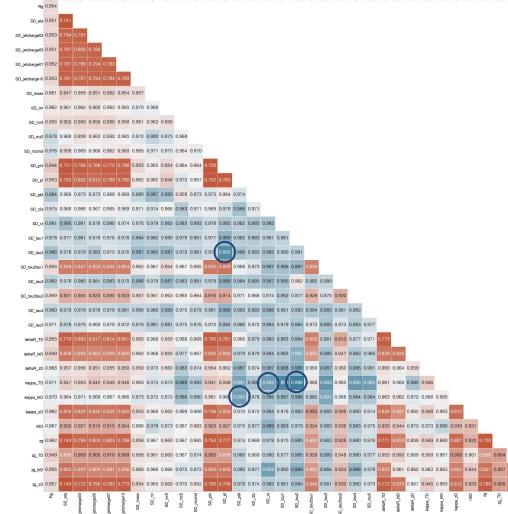
Component 2	
SD_tau2tau1	0.513019
nSD	0.296634
SD_tau3tau2	0.274460
SD_mz2	-0.318791
zg	-0.410864




0.324438
0.255778
0.244787
0.234625
-0.207843
-0.210595
-0.239358
-0.316737
-0.370820
-0.385327


Variables Correlation Clustering for the Full Sample

Component 4 SD_pt -0.648165

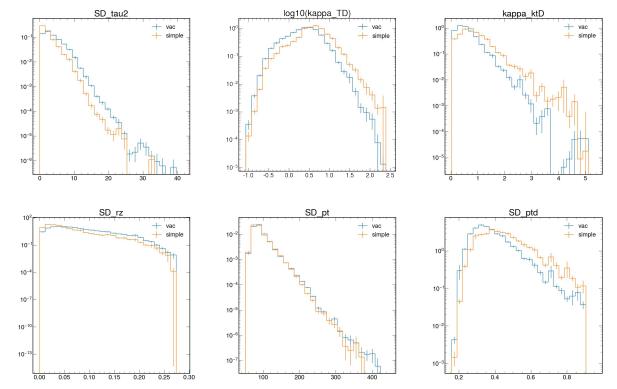


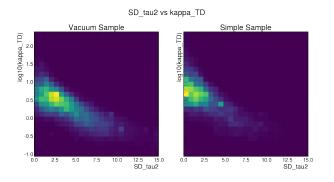
- Correlations only highlight pairwise linear relations
- How does each variable help to discriminate between vacuum and medium jets
 - By themselves
 - In combination with other variables
- Train BDT on the whole set to assess maximum discriminative power (quantified by area of ROC). Then:
 - Train BDT for each variable in isolation
 - Train BDT for each pair of variables

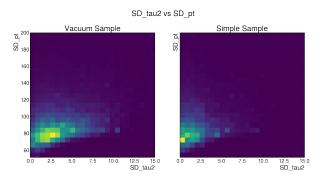
Audience question time:

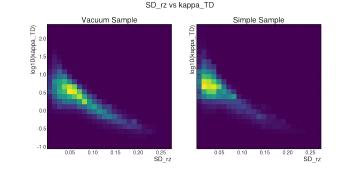
What pair of variables has the highest vacuum-medium discriminative power?

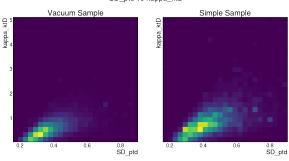
(rz, kappaTD) (ptD, kappaktD) $\kappa^{(a)} = \frac{1}{p_{T,jet}} \max_{i \in C/A \text{ seq}} \left[z_i (1 - z_i) p_{T,i} \left(\frac{\Delta R_i}{R_0} \right) \right]$ $rz = \sum z_i \Delta R_{i,jet}$ $i \in iet$ $\tau_N = \frac{\sum_{i=1}^N p_T^i \min(\Delta R_{1,i}, \dots, \Delta R_{N,i})}{R_0 \sum_{i=1}^N p_T^i}$


- (tau2, kappaTD)


(tau2, pt)


Bingo for:


-



SD_ptd vs kappa_ktD

Conclusions

Conclusions

- We studied an ensemble of jet observables on Jewel samples
- A correlation studied, in addition to a PCA, was carried out to disentangle the linear relations amongst the observables
 - Many observables appear to be highly correlated, with evidence for considerably lower intrinsic dimensionality
- A ML classifier was used to pair up observables in terms of their vacuum-medium discriminative power
 - One can saturate the maximal performance with a handful of pairs (notably involving tau2, kappa_TD, ptD)

Future Work and Directions

- Replicate these steps with other generators
 - Prepare Docker images with other generators
 - Settle on the observables list
- Check if the discrimination power and the correlations are robust, i.e. generator independent
 - Could we teach a classifier to guess from which generator a sample comes from?
 - Identify specific features of generators to understand if they correspond to specific behaviours that can distinguish physical models

Thanks

Follow up: mcromao@lip.pt