

Crystal installation at SPS: Operational scenarios and failures cases

F.M. Velotti, M. Fraser, B. Goddard, V. Kain

Introduction to ZS crystal shadowing

Introduction

- → Slow extraction, based on third-integer resonance, comes with unavoidable losses at the electrostatic septum (ZS)
- → R&D carried out over the last 5 years to arrive at a crystal shadowing system ready for operational deployment
- → Continuous flow of particles from beam core to large amplitudes following (almost) straight separatrix
- → ZS thin wires are responsible for separating the extracted from circulating one) direct exposure of wires to primary particles!
 - About 3% of the circulating beam lost in the slow extraction channel
- → This is the main limiting factor to the deliverable protons on target (POT) from the SPS
- → Prototype crystal (TECS) was installed in LSS2 for MDs and tests of the shadowing concept (ECR: EDMS#1997264):
- → Scope of today's MPP presentation is preparation for:
 - Operational deployment of the LSS2 TECS in 2021
 - ECR for installation of LSS4 TECS in YETS2021/22

Introduction

- → Si bent crystals can be used as loss reduction devices for slow extraction
- → For example, a single 2 mm long crystal can deflect 400 GeV protons by 170 microrad: this corresponds to ~120 T magnetic field!
 - They can be made very thin
 - They can deal with large intensities
 - Very low probability to produce losses due to their low probability to perform inelastic interactions
- → Non-linear tracking simulations carried out including an empirical 2D Probability Density Function (obtained from UA9 measurements) representing the crystal as a thin kick (no inelastic interactions considered)

- → A thin bent crystal is placed to $n \times \pi + \Delta \mu_x$ from the ES (n integer and $\Delta \mu$ sufficiently large to fit ES wires)
- → The crystal, interacting with the beam, reduces the particle density on the extracted separatrix in very well defined transverse region
- \rightarrow The depleted region is then aligned with the ES

TECS in LSS2 SPS: system as installed

- → A goniometer with the specified crystal characteristics was installed in the SPS
- → The total tank length is only 187 mm!
- → The very short device was developed with UA9 and installed 7 m upstream the beginning of the ZS
- → The crystal itself is 0.8 mm thick and 2 mm long for a vertical extension of 35 mm

Orbit correction dipole

Local crystal shadowing from LSS2

- → A loss reduction factor of x2 expected from simulations
- → This was measured in 2018 and ~40% loss reduction was achieved (when in channelling, CH)
- → ~20% achieved when in volume reflection (VR)

Tracking simulations for shadowing

Local crystal shadowing from LSS2

→ A loss reduction factor of x2 expected from simulations

- → This was measured in 2018 and ~40% loss reduction was achieved (when in channelling CH)
- ~20% achieved when in volume reflection (VR)

Non-local crystal shadowing from LSS4

→ To try to improve the loss reduction, we proposed a better suitable location => exploitation of machine non-linear elements (extraction sextupoles mainly) to enhance separatrix depletion

=> crystal in LSS4 => x4 loss reduction with single crystal

→ ...can we do better?

Tracking simulations for shadowing

Non-local crystal shadowing from LSS4

- → Exploiting efficiency of VR and adding up deflection angles with <u>Multi</u> <u>VR Arrays (MVRA)</u>, we can get to x10 loss reduction at the ZS from LSS4
- → MVRA crystals will come in a second stage, hopefully installed in LSS4 at the end of 2022
- → We will start with single crystal in LSS4 in 2022 (SRR EDMS#2382192)

Non-local crystal shadowing from LSS4

 \rightarrow

- → Exploiting efficiency of VR and adding up deflection angles with <u>Multi</u> <u>VR Arrays (MVRA)</u>, we can get to x10 loss reduction at the ZS from LSS4
- → MVRA crystals will come in a second stage, hopefully installed in LSS4 at the end of 2022
- → We will start with single crystal in LSS4 in 2022 (SRR EDMS#2382192)

Operational scenarios and possible failures of TECS in LSS2 and LSS4

- → TECS in LSS2 to be commissioned as OP device in 2021:
 - Exploit re-commissioning period to repeat 2018 "reference" measurements with new ZS system (new septa installed in LS2)

→ Expect to be OP-ready in VR immediately

- Operational test in VR carried out in 2018 for 13 hours with success [1] with stable loss reduction of 20%
- → OP-readiness in CH depends on success of MSSB splitting efficiency (MD time requested, if needed) and stability in CH
 - See commissioning plan [2]
 - Need to slightly modify optics in TT20 (1x quad strength -20% towards the end) and 2 closed bumps as studied by P. Arrutia [3]
 - Need to test stability in CH over longer time periods
 - Important to check energy deposition on TCSC/MSSB for beams extracted with TECS: no show-stoppers expected (to be done by EN-STI using parameters in EDMS #2360012)

→ Interlocking extended to the OP device as described in Mario's talk

TECS in LSS4: operational scenarios

- → New TECS installed in LSS4 during YETS 2021/22 [$\underline{4}$, $\underline{5}$]:
 - Used as MD device in 2022 with single crystal in CH
 - Aim to make CH operational before end of 2022
 - Multi-crystal VR array to be studied in MD, when available
- → How will interlocking be extended to the OP device?
 - Gonio control system will be based on standard collimator system
 - CIBU connection to BIS in BA4 is gonio control rack in BA4 (RA1204)
 - Same interlocking approach to LSS2 TECS as discussed by Mario:
 - SIS interlock on linear position ranges, no interlock on angle
 - HW interlock won't help as LVDT reading not accurate enough to maintain correct angle
 - HW interlock on end-switch (IN/OUT) via BIS to be inverted when devices moves from MD → OP
 - Interlock to be maskable
 - Limit switches and end-stop give hard protection

- CERN
- → A few vulnerabilities exist at SPS for slow extraction (mainly for protection of ZS):
 - Extraction bumpers (LSS2) and extraction sextupoles are not interlocked by HW (and probably should be)
 - We recommend an MPP review of SPS slow extraction system in 2021
- → New interlocking possibilities will be available in Run 3:
 - SPS BLM HW interlock on LSS2 **rate** (running sums)
 - SPS BCT HW interlock on **rate** of change of circulating beam intensity
 - **Comment:** LHC BLM's used for MD's will not be ready for interlocking in 2021
- → Comments for MPP for TECS (See Mario's slides our interlock strategy)
 - General approach for both TECS in LSS2 and LSS4
 - Most failure scenarios exist presently and are identical to those that risk the ZS
 - Expect the crystal to be far more robust than fragile ZS wire arrays
 - Two crystals tested in HRMT (up to 288 bunched and lell ppb) with no damage and no degradation in the efficiency [6]
 - Crystal was irradiated with 2.4x1e20 450 GeV protons/cm2 in the North Area during one year operation with no damage but with performance deterioration [7]
 - Crystal is positioned far from the circulating beam (and extracted LHC beam)
 - New HW interlocks on rates (beam intensity and loss) protect us against extracting non-resonantly and fast (milliseconds time constant of bumper circuits)
 - In most cases, if beam-crystal alignment changes (amorphous, AM), the beam loss at ZS will return to nominal (as pre-LS2)

Failure	Consequence	Probability	Risk	Mitigation
 Crystal-beam angle or positioning error: Orbit drifts from hysteresis etc. Error with feedback/forwar d system? Crystal actuated towards circulating beam 	 Loss of shadowing (slow, t ~ s): channelled beamlet extracted 	More likely	Low: (i) Revert to nominal beam loss in LSS2	(i) BLM sum (LSS2 and TT20)
	 Loss of shadowing (slow, t ~ s): channelled beamlet (~10%) impacting ZS wire array 	Less likely	Low: (i) Beam loss at ZS increased locally by up to ~50% (slow)	(i) BLM sum (ZS only)
	 (iii) Loss of shadowing (slow, t ~ s): crystal as amorphous scatter (iv) Crystal actuated towards circulating beam 	Unlikely	Low: (i) Revert to nominal beam loss in LSS2	 (i) BLM sum (ii) Interlock on TECS position (iii) End stop

Failure	Consequence	Probability	Risk	Mitigation
 Extraction bump: PC no turn-on PC trip during cycle Wrong amplitude bump (SW limits on LSA knob) 	(i) Circulating beam swept into crystal (fast, t ~ ms): fast extraction of beam (~100%) into TT20 (CH or VR) or onto machine aperture	Unlikely (i) Narrow angular acceptance of crystal	High: (i) Targets (ii) ZS damage (in CH)	 (i) HW interlock LSS2 bumpers (ii) BCT rate (iii) BLM rate
	 (ii) Circulating beam swept into crystal (fast, t ~ ms): collimation on crystal as amorphous scatterer 	More likely	High: (i) ZS damage (ii) Exchange magnets (vacuum	 (i) HW interlock LSS2 bumpers (ii) BCT rate (iii) BLM rate
	(iii) Circulating beam lost on aperture in machine		chambers)	(iv) BLM sum (ZS only)

- → ZS suffered such an accident in 2007, never since (EDMS #1870893)
- → Comment: QF glitches were inducing fast extractions (~ ms) to TT20 in Run 2 without any known issue on targets/TCSC

Failure	Consequence	Probability	Risk	Mitigation
 Multi-crystal array: Damage or non- conformity after characterisation e.g. during transport? Development of mechanical alignment fault during operation? 	 (i) Single crystal entering channelling: (i) Loss of shadowing See slide 17 	Unlikely (once characterised)	Low: (i) Revert to nominal beam loss in LSS2	 (i) Characterisi on in H8 (ii) BLM sum (LSS2 and TT20) (iii) BLM ring
Multi-crystal array: • Actuator stuck/blocked in-beam	 (i) No impact to LHC beam operation (ii) <u>if crystal closer</u> <u>than 40 mm to</u> machine axis 	Unlikely	Low: (i) Possible downtime to SFTPRO	(i) Access needed
E	$\begin{array}{c} 0.10 \\ 0.05 \\ 0.00 \\ -0.05 \\ -0.10 \\ 3900 \\ 3950 \\ 4000 \\ 4000 \\ 4050 \\ 4100 \\ 4150 \\ 4200 \end{array}$			

s / m

Failure	Consequence	Probability	Risk	Mitigation
 Multi-crystal array: Damage or non- conformity after characterisation e.g. during transport? Development of mechanical alignment fault during operation? 	(i) Single crystal entering channelling: (i) Loss of shadowing See slide 17	Unlikely (once characterised)	Low: (i) Revert to nominal beam loss in LSS2	 (i) Characterisi on in H8 (ii) BLM sum (LSS2 and TT20) (iii) BLM ring
 Multi-crystal array: Actuator stuck/blocked in-beam 	 (i) No impact to LHC beam operation (ii) <u>if crystal closer</u> than 40 mm to machine axis 	Unlikely	Low: (i) Possible downtime to SFTPRO	(i) Access needed
5	$\begin{array}{c} 0.10 \\ 0.05 \\ 0.00 \\ -0.05 \\ -0.10 \\ 3900 \\ 3950 \\ 4000 \\ 4050 \\ 4100 \\ 4150 \\ 4200 \\ s \ m \end{array}$	Mechanical switches should not allow this		

- → When shadowing efficiency degrades the OP team will receive a SIS interlock on beam loss:
 - Normalised (per proton) beam loss thresholds (slow, after cycle played) decided during commission (experience needed to check stability and tighten limits without compromising availability)
 - Procedure:
 - SFTPRO beam cut by SIS
 - Call an ABT expert and analyse event:
 - EN-SMM piquet (or EN-STI expert) called in case of HW issue with TECS
 - If problem understood and resolved, resume operation with TECS
 - Otherwise, retract TECS and resume operation (nominal BLM thresholds)
- → Something more serious would trigger a HW interlock (fast trips):
 - This could be BLM above absolute thresholds
 - Procedure:
 - SFTPRO beam cut by HW (fast) HW interlock
 - Call ABT expert and wait before resuming SFTPRO

Summary

- → Present interlock system based on beam loss and intensity measured by BLM/BCT will adequately protect the machine:
 - Interlocking on rates of change of beam loss and intensity are available
- → TECS in LSS2 to be commissioned as OP device in 2021:
 - Expect to be OP-ready in VR immediately
 - OP-readiness in CH expected later 2021 and depends on efficiency of beam splitting by MSSB in TT20 with beamlet
- → TECS in LSS4 to be installed in YETS 2021/22:
 - Initially as an MD device with OP-readiness expected later 2022
 - Interlock strategy identical to LSS2 TECS
- → Independent of the TECS installation we propose an MPP review of the SPS slow extraction system
- → ECR for LSS4 TECS installation to be circulated early 2021