Update on tests with CVN in module-1 configuration

S.A.-M. and S.P , $\,12$ nov. 2020

Update on what shown one month ago

Recall: views are removed from the Module-1 simulation, the network is trained and tested.

- The results, compared to 3-views ones (published), showed a degradation of performance on nu_e purity, as main effect
- and little difference between 2-views and 1-view

	Results (II)												
		Overall Purity (CC v _µ)	Overall Purity (CC v _e)		Overall Efficiency (CC ν _μ)	Overall Efficiency (CC v _e)							
	DUNE CVN (views 0, 1, and 2)	0.9727		0.8705	0.9389	0.9261							
	Collection plane (view 2)	0.9625		0.7915	0.8922	0.8846							
	Induction planes (views 0 and 1)	0.9631		0.7896	0.9129	0.8963							
	Induction plane, collection plane (views 1 and 2)	0.9633		0.7872	0.9106	0.8924							
Saúl Alonso-Monsalve													

The training was done without changing the priorities used in the DUNE-FD-SP.

The absolute statistical uncertainty in the figures is about 0.01 (samples of some 20k events).

Effects of removing planes, compared to default 3D:

- Small reduction in nu_mu efficiency
- Somewhat larger reduction in nu_e efficiency
- Small reduction in nu_mu purity
- Most visible reduction (by 8% relative) in nu_e purity
- The loss of performance is not large.

The loss on nu_e purity might be reduced (to the cost of reduced efficiency, most likely).

There is very little difference in performance among the three 1D/2D variations.

We do not have fully simulated data for the VD configuration, but the 1-view results can be taken as **lower-bound** on the performance of the VD detector (at least the view from the strip orthogonal to the detector axis is common the two design.

Therefore it is worth to look at the interplay between purity and efficiency for nu_e events, to see whether the drop in purity (87% to 79%) can be recovered, and at what cost.

Changing the way the network is trained has not produced remarkable results so far, so today we discuss the effect of changing the threshold for acceptance.

Event distributions (0)

• Original DUNE CVN (views 0, 1, and 2).

Event distributions (1)

• Alternative 1: only collection plane (view 2).

Event distributions (2) and (3)

• Alternative 2: two induction planes (views 0 and 1). CC Numu

Trying different CC ve cut values

sults (II)

Due to network parameter initialisation, the results have a ± error of ~0.005

Overal CC ve purity			Overal CC ve efficiency				
						Overall Purity (CC y)	Overall Efficiency (CC v ₋)
0.80	0.85	0.90	0.80	0.85	0.90	Cut: 0.	70
0.9040	0.9219	0.9360	0.9008	0.8896	0.8486	0.8705	0.9261
0.8526	0.8749	0.8998	0.8422	0.8086	0.7565	0.7915	0.8846
0.8355	0.8532	0.8867	0.8673	0.8452	0.7992	0.7896	0.8963
0.8277	0.8551	0.8835	0.8575	0.8385	0.7823	0.7872	0.8924
	0.80 0.9040 0.8526 0.8355 0.8277	Overal CC ve purity 0.80 0.85 0.9040 0.9219 0.8526 0.8749 0.8355 0.8532 0.8277 0.8551	Overal CC ve purity 0.80 0.85 0.90 0.9040 0.9219 0.9360 0.8526 0.8749 0.8998 0.8355 0.8532 0.8867 0.8277 0.8551 0.88355	Overal CC ve purity Overal CC ve purity	Overal CC ve purity Overal CC ve efficient 0.80 0.85 0.90 0.80 0.85 0.9040 0.9219 0.9360 0.9008 0.8896 0.8526 0.8749 0.8998 0.8422 0.8086 0.8355 0.8532 0.8867 0.8673 0.8452 0.8277 0.8551 0.8835 0.8575 0.8385	Overal CC ve purity Overal CC ve efficiency 0.80 0.85 0.90 0.80 0.85 0.90 0.9040 0.9219 0.9360 0.9008 0.8896 0.8486 0.8526 0.8749 0.8998 0.8422 0.8086 0.7565 0.8355 0.8532 0.8867 0.8673 0.8452 0.7992 0.8277 0.8551 0.8835 0.8575 0.8385 0.7823	Overal CC ve purity Overal CC ve efficiency Overal Purity (CC v.) Overal Purity (CC v.) Overal Purity (CC v.) Outroit Out

87% purity is recovered at a cost of a drop from 93% to 81% in efficiency.

Saúl Alonso-Monsalve

7

• Not clear yet what would be the optimal trade-off between efficiency and purity

- Adding the x-view should improve the performance
- The fact that, in this test, 2-views are not better than 1-view suggests that the network may not be optimal/robust, but this requires further studies (and the subject is probably not central for the case of VD)