

JUWELS BOOSTER EARLY EXPERIENCES CERN COMPUTE ACCELERATOR FORUM

9 June 2021 | Andreas Herten | Jülich Supercomputing Centre, Forschungszentrum Jülich

Member of the Helmholtz Association

Overview

Jülich Supercomputing Centre

JUWELS Booster Overview JUWELS Overall Architecture

Early Experiences Previously in JUWELS Early Access Program Applications Bugs Early Results SOMA ParFlow JUOCS LOCD: Bonn PIConGPU Others Pre-Training, Transfer Learning DASO Large-Scale MD **Summary and Conclusions** Summary

Jülich Supercomputing Centre

Forschungszentrum Jülich Germany, near Cologne, interdisciplinary research, 6400 employees

Jülich Supercomputing Centre

- Operation of supercomputers
- Education, training
- Application Support, Domain Science Support
- Research & Development

Accelerating Devices Lab Support, research, education for GPUs et al.; NVIDIA Application Lab at Jülich

Supercomputers

Production **JUWELS**, JURECA DC, JUSUF Prototypes JUMAX, DEEP, ...

JUWELS Overall Architecture

Forschungszentrum

CENTRE

JUWELS Booster Overview

Node Configuration

Arch Atos Bull Sequana XH2000

CPU 2 × AMD EPYC 7402: $2_{Socket} \times 24_{Core} \times 2_{SMT}$, 2 × 256 GB DDR4-3200 RAM; NPS-4

- GPU 4 × NVIDIA A100 40 GB, NVLink3 73 PFLOP/s, 1.16 EFLOP/s_{FP16TC}, 18.7 EOP/s_{BinTC}
- HCA $4 \times$ Mellanox HDR200 (200 Gbit/s) InfiniBand ConnectX 6

etc $2 \times PCIe$ Gen 4 switch

CENTRE

Slide 4142

JUWELS Booster Overview

Network Configuration: DragonFly+ Network

In-Cell (48 nodes): Full fat-tree in 2 levels

Inter-Cell (20 cells): 10 links between each pair of cells

JUWELS

Cluster Booster Integration

Fully integrated system: JUWELS with Cluster and Booster modules

- File system: GPFS
- Network: InfiniBand
- Workload management: Slurm
- Resource management: ParaStation / ParaStation Slurm

Picture: Booster Cluster

CENTRE

JUWELS Software Stack

Software

- Software management: EasyBuild, LMod
- Compilers: GCC, Intel, NVHPC
- GPU-aware MPIs (ParaStationMPI, OpenMPI; via UCX)
- \rightarrow https://apps.fz-juelich.de/jsc/llview/juwels_modules_booster/
- Operation
 - Operation System: CentOS 8
 - Provisioning: Ansible

Early Experiences

JUWELS Timeline

2018 JUWELS Cluster production start

2019 JUWELS Booster kick-off

2020 Apr JUWELS Booster installation start

2020 May JUWELS Booster Early Access Program first job

2020 Nov JUWELS Booster production start, first compute-time period

2021 May JUWELS Booster second compute-time period

Early Access Program

- Started in early 2020
- Invited 14 applications from various scientific domains
 - Aimed for applications that could use JUWELS Booster at scale
 - Some teams already use JUWELS Cluster, others new
- Offer: Use JUWELS Booster before general access; Request: Help improve system, compute-time allocation
- Endeavor of many parts in JSC and beyond
 - NVIDIA Application Lab: Steering, GPU optimization, application support, system support
 - Application support, Simulation Labs
 - Performance Optimisation and Productivity team
 - System operations team
 - Vendors: NVIDIA, ParTec, Atos

Timeline to Booster

- Preparation Timeline
- Additionally: events

Applications I

Climate/Meteo/Hydro (ESM)

- DeepACF ** High-resolution Weather Forecast Based on Deep Learning </>> Lib:DL ** JSC: Bing Gong, Michael Langguth, Amirpasha Mozaffari, Martin Schultz, Scarlet Stadtler
 - ICON * Next-Generation Physical Weather and Climate Models </>> OpenACC MPI Met: Luis Kornblueh; NVIDIA: Dmitry Alexeey
 - MPTRAC * Massive Parallel Trajectory Calculations of Volcanic Emissions </ >
 - 警 JSC: Sabine Grießbach, Lars Hoffmann
 - ParFlow * Surface, Soil, Ground Water Flow </>
 CUDA C
 - 警 IBG-3: Jaro Hokkanen, Stefan Kollet

Biological Matter

- Amber * Drug Binding over Biologically Relevant Timescales (MD) </> Lib * JSC/HHU: Holger Gohlke, Christopher Pfleger, Michele Bonus SOMA * Kinetics of Nanomaterial Formation (Soft Matter) </> OpenACC
 - U Göttingen: Ludwig Schneider, Niklas Blagojevic

Applications II

- JUQCS-G [®] Simulating Universal Quantum Computer (Quantum) </> CUDA Fortarn [™] JSC: Hans De Raedt, Kristel Michielsen, Dennis Willsch
 - E-train * Understanding Learning Processes in Brain (Neuro) </> Lib:DL * U Graz: Franz Scherr, Wolfgang Maass; U Sussex: James Knight; INM-6: Sacha van Albada

NBODY6++GPU [®] Dense Star Clusters and Gravitational Waves (Astro) 〈/> CUDA Fortran [®] U Heidelberg: Rainer Spurzem

Lattice QCD

Bonn	Flavour Singlet Structure of Hadrons
	Lib:QUDA
	曫 U Bonn: Simone Bacchio, Bartosz
	Kostrzewa, Carsten Urbach
Wuppertal	SignQCD – Studying the Hottest
	Man-made Liquid Lib:QUDA
	曫 U Wuppertal: Szabolcs Borsányi,
	Kalman Szabo
Bielefeld	HotQCD – Studying Extreme States of
	Matter CUDA C++
	警 U Bielefeld: Christian Schmit, Dennis

🖀 U Bielefeld: Christian Schmit, Dennis Bollweg, Frithjof Karsch

Regensburg * Baryons with Charm </>
Lib:Grid Peter Boyle, Christoph Lehner, Gunnar Bali, Sara Collins

Applications II

PIConGPU	👒 Plasma Simulations f	or Next Generation	Lattice QCD		
	Particle Accelerators (Pla HZDR: Alexander Debu Rene Widera, Michael Bu	sma) CUDA C++ us, Anton Lebedev, ssmann	Bonn	Isour S Isour S Isour S Isour S Isour S	inglet Structure of Hadrons A Simone Bacchio, Bartosz
JUQCS-G	Simulating Universal Q	uantum Computer		Kostrzewa,	Carsten Urbach
	(Quantum) CUDA Fort	arn	Wuppertal	🌸 SignQCD	 Studying the Hottest
	Dennis Willsch	ightarrow Details on eac	h app online	♂ -made I Wuppe	Liquid > Lib:QUDA rtal: Szabolcs Borsányi,
E-train	Understanding Learning	ng Processes in		Kalman Sza	bo
	Brain (Neuro) Lib:DL		Bielefeld	🍀 HotQCD -	- Studying Extreme States of
	警 U Graz: Franz Scherr, V	Volfgang Maass; U		Matter C	UDA C++
	Sussex: James Knight; IN	IM-6: Sacha van		曫 U Bielefe	ld: Christian Schmit, Dennis
	Albada			Bollweg, Fri	thjof Karsch
NBODY6+-	GPU 🏶 Dense Star Clust Gravitational Waves (Astr Mutheidelberg: Rainer S	ers and o) CUDA Fortran Spurzem	Regensburg	Baryons Peter Boy Gunnar Bali	with Charm 〈/〉Lib:Grid yle, Christoph Lehner, , Sara Collins

Feedback to JSC

Issues

- Performance fluctuations (GPU, node, network)
- OpenMPI segmentation violations
- NCCL hangs
- NVHPC Fortran compiler bugs
- UCX configuration (caches)
- PCIe switch bi-directional bandwidth
- PCIe device crashes
- I/O subsystem maturity

Peculiarities

- AMD CPUs / NUMA domains
- PCIe switch
- GPU device affinity
- Network design (DragonFly+)

Peculiarities

- CPU AMD EPYC 7402: 24 core processor (SMT-2) × 2 sockets
 - Each socket built as Multi-Chip Module (chiplets)
- Affinity Not all device have affinity to each other

Rank	NUMA Domain	GPU ID	HCA ID
0	3	0	0
1	1	1	1
2	7	2	2
3	5	3	3

Peculiarities

- CPU AMD EPYC 7402: 24 core processor (SMT-2) × 2 sockets
 - Each socket built as Multi-Chip Module (chiplets)
- Affinity Not all device have affinity to each other

	Rank	NUMA Domain	GPU ID	HCA ID			
	0	3	0	0	-		
	1	1	1	1			
	2	7	2	2			
	3	5	3	3			
	ightarrow New Slurm defaults						
<pre>\$ sruncpu-bind=verbose -n 2 bash -c "" & sort cpu_bind=THREADS - jwb0001, task 0 0 [17070]: mask 0x400 cpu_bind=THREADS - jwb0001, task 1 1 [17072]: mask 0x40</pre>							
	= 00000			0 000000	000000	0000	

set

Peculiarities

Each socket built as Multi-Chip Module (chiplets)

Affinity Not all device have affinity to each other

 $\mathcal{B}(N) = \lfloor (N/2)^2 \rfloor \times (10 \times bw_1)$

Early Results

Early Results

Overview

- Some first results by users
- Mainly EA participants
- Most results preliminary
- Results partly on machine under construction

Early Results SOMA ParFlow JUOCS LOCD: Bonn PIConGPU Others Pre-Training, Transfer Learning DASO Large-Scale MD

Early Results Soft Matter: SOMA

• SOMA: Soft, coarse-grained Monte-Carlo Acceleration

L. Schneider and M. Müller, Comput. Phys. Commun. 235C 463–476 (2019) and GPU Seminar Talk

- Kinetics of nanomaterial formation; multi-component polymer systems (battery materials, membranes, ...)
- Unique: Resolve details of polymer, but study lengths relevant to engineering
- 警 Team: L. Schneider, N. Blagojevic, L. Pigard, M. Müller, et al
- ightarrow gitlab.com/InnocentBug/SOMA/
 - C, OpenACC, MPI
 - Frequent JUWELS user

Comparison of GPU Generations

- Long experience with various GPU architectures
- → Update to new generations early!
 - Some algorithmic changes between generations; also feature additions
 - PTPS: Particle Timesteps Per Second

SOMA Single-GPU Generation Comparison

MPTPS

Slide 20142

Kernel Comparison: Memory Chart

- Many random accesses
- → Benefit from larger L1, L2 caches
- ightarrow More FP64 throughput
 - Knock-on effect: less memory traffic
 - Kernel runtime:

V100 25.8 ms A100 21.5 ms A100* 18.9 ms

New Method for Scaling

- Scale of Booster: New algorithms, implementations with more scalability!
- New project for Booster: *String* Method
- String-coupled SOMA ensemble simulation
- Master thesis of N. Blagojevic

Early Results Earth-system modelling: ParFlow

Earth-system modelling: ParFlow

 ParFlow: Numerical model for groundwater and surface water flow

J. Hokkanen, S. Kollet, et al, EGU General Assembly 2020, 4–8 May 2020, EGU2020-12904, and GPU Seminar Talk

- Model hydrologic processes, hill-slope to continental scale; forecasting, water cycle research, climate change; since 1990s
- Finite-difference scheme with implicit time integration
- 警 Team: J. Hokkanen, S. Kollet
- \rightarrow parflow.org
 - C, C++, CUDA, MPI
 - Fresh GPU port in prepartion for Booster

Earth-system modelling: ParFlow

Single-Node Performance

- Comparing CPU of Booster node with GPUs
- Good speed-up, max. 29×
- Memory pool (*RMM*) gives extra boost
- Larger problem sizes solvable per node

Earth-system modelling: ParFlow

Weak Scaling

- Fixed problem size per node
- 26× speed-up achieved over
 O(100) nodes

Early Results

Quantum Computing: JUQCS

- JUQCS: Jülich Universal Quantum Computer Simulator De Raedt et al., Comp. Phys. Comm. 237 47–61 (2019)
- Universal quantum computing on digital computer
- Network-, memory-intensive computations
- 警 Team: Research group Quantum Information Processing
 - Fortran, CUDA Fortran
 - Frequent JUWELS user

JUQCS

40 qubits:

- > 16 TiB memory needed
 - ightarrow 512 A100s
- Each quantum operation: Update states, 8 TB transfer
- Weak scaling: Compute constant, MPI as expected
- Strong scaling: Still investigate DragonFly+ topology

JUQCS More Weak Scaling

 Weak scaling to 2048 GPUs / 42 qubits

 Good behavior, but MPI still limiter

Early Results LQCD: Bonn

9 June 2021

LQCD: Bonn

ETMC: Extended Twisted Mass Collaboration

C. Alexandrou and S. Bacchio et al. Phys. Rev. D 101 094513 (2020)

- Study of the Flavour Singlet Structure of Hadrons
- 303 Team: S. Bacchio, B. Kostrzewa, et al; Uni Bonn, Uni Cyprus, Cyprus Institute, Uni Rome, ...
- \rightarrow github.com/etmc.PLEGMA.OUDA.tmLOCD
 - C/C++, CUDA, MPI, OpenMP
 - Frequent JUWELS user

LQCD: Bonn

Comparison of GPU HPC Machines

- Multigrid inversion
- Mean time-to-solution, spread
- Systems
 - Piz Daint Haswell, P100; DragonFly Marconi100 POWER9, V100; DragonFly+
- JUWELS Booster: Low time to solution; but large spread (being investigated)

Multigrid inversions on lattice (80^3x160 , QUDA)

Early Results PIConGPU

PIConGPU

PIConGPU: Plasma simulation

H. Burau et al, IEEE Transactions on Plasma Science 38 10 (2010)

- Particle-in-cell simulation for Exascale-level GPUs
- 警 Team: A. Lebedev, A. Debus, M. Bussmann, et. al
- $\rightarrow \texttt{github.com/ComputationalRadiationPhysics/picongpu}$
 - C/C++, CUDA, MPI, Alpaka

PICon **CP**

PIConGPU

Results

Strong scaling for different grid sizes

Early Results Others

Large-Scale Pre-Training on Transfer Learning for Images

- Publication: Effect of large-scale pre-training on full and few-shot transfer learning for natural and medical images
- Authors: Mehdi Cherti, Jenia Jitsev; JSC
 - Status: Preprint (under review) arXiv:2106.00116 [cs.LG]

Distributed Training with DASO

Deep-Learning

- Publication: Accelerating Neural Network Training with Distributed Asynchronous and Selective Optimization (DASO)
- Authors: D. Coquelin et. al; KIT, DLR
 - Unique: 25 % improvement over Horovod
 - Status: Preprint arXiv:2104.05588 [cs.LG]

Large-Scale Ab-Initio Molecular Dynamics

Molecular Dynamics

- Publication: Enabling Electronic Structure-Based Ab-Initio Molecular Dynamics Simulations with Hundreds of Millions of Atoms
- Authors: R. Schade et. al; Paderborn University
- Unique: FP16/FP32 mixed precision, 1536 GPUs, 324 PFLOP/s
- Status: Preprint arXiv:2104.08245 [physics.comp-ph]

Summary and Conclusions

- JUWELS Booster: European flagship system based on A100 GPUs and HDR200 InfiniBand network
- Highly scalable system design with > 70 PFLOP/s_{FP64} compute performance and 749 Tbit/s acc. injection bandwidth
- In production since end of November, some applications earlier through Early Access Program
- First results incoming; second allocation period started

Appendix

Appendix Network Performance References

Appendix Network Performance

Network Performance

OSU Micro-Benchmarks: Bandwidth

- OSU Microbenchmarks: device-device bandwidth (osu_bw D D)
- Good results, expected limiters
- Intra-node: NVLink3 bandwidth
- Inter-node: HDR200 bandwidth
- Model fits show
 2 regimes (---/ ---)

JUWELS Booster Device-Device Bandwidth (osu_bw)

Appendix References

References: Images, Graphics I

- [1] Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Cluster.
- [2] Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Booster.

