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Boost your high bandwidth data 
acquisition by adding OpenCAPI and 
memory coherency to FPGA

Filip Leonarski :: Beamline Data Scientist :: Macromolecular Crystallography
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• Introduction: Macromolecular crystallography at synchrotrons and X-ray 
detectors

• Technology: POWER + OpenCAPI

• Solution: Jungfraujoch

Plan
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Paul Scherrer Institute
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• MX is a technique routinely used to determine 
3D structure of proteins at synchrotron 
beamlines (e.g. ~50% users of Swiss Light 
Source)

• MX is widely used in structure-based drug 
discovery (including COVID-19)

• >140,000 high-resolution structures have been 
determined to date (biosync.org)

• Hybrid pixel X-ray detectors (e.g. PILATUS, 
EIGER) have make revolutionary impact on MX

Macromolecular crystallography (MX)
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• JUNFGRAU is a hybrid pixel detector 
with semiconductor sensor (silicon) 
and ASIC

• Pixel size: 75x75 μm

• Composed of modules, 
each ~500,000 pixels

• X-ray energy: 2-18 keV

• Frame rate: up to 2.2 kHz

• Designed for X-ray free electron lasers 
and synchrotrons 

• Streams UDP packets over 10 GbE 
lines (2 x 10 GbE / module)

JUNGFRAU X-ray detector 
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Test at VMXi Diamond 
Light Source (UK)

Test at BL-1A Photon 
Factory KEK (JP)

Test at X06DA Swiss 
Light Source (CH)



• 2021
- JUNGFRAU 4 Mpixel 2 kHz
- Up to 18 GB/s data

• 2022
- JUNGFRAU 10 Mpixel 2 kHz
- Up to 46 GB/s data

• Necessary functionality
- Save diffraction images
- Provide live feedback 

(do frames contain Bragg spots?)

• We save all the data
(no community accepted method to 
reduce data on the fly)

JUNGFRAU for Swiss Light Source
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MX detector data rates double every 2 years
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2007 PSI PILATUS 6 Mpixel 12.5 Hz 0.2 GB/s

2014 Dectris EIGER 16 Mpixel 133 Hz 3.4 GB/s

2019 Dectris EIGER 2 XE 16 Mpixel 400 Hz 13.5 GB/s

2020 PSI JUNGFRAU 4 Mpixel 2200 Hz 18.4 GB/s

2022 PSI JUNGFRAU 10 Mpixel 2200 Hz 46.1 GB/s



• To maximize both sensitivity of detection and dynamic range, JUNGFRAU pixel 
has three different gain modes (G0, G1, G2) 

• G0 is the most sensitive (low noise), but with dynamic range of about 30 photons
• G2 has dynamic range of >10,000 photons, but noise levels don’t allow for single 

photon resolution

• Each pixel in each frame starts in G0 and dynamically switches to G1 and G2

JUNGFRAU – adaptive gain charge integrating 
detector
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F. Leonarski, S. Redford, A. Mozzanica, … , M. Wang 
Nat. Methods, 15, 799-804 (2018)



• Each gain mode has its own dark current (pedestal) and gain constants
• Pixels have different sensitivities, so outcome needs to be adjusted
• Conversion procedure to find number of photons is:

for each pixel from 0 to N-1
gain_bit = bits 15:14 from input[pixel]
ADU      = bits 13: 0 from input[pixel]
switch (gain_bit)

case 00:
output[pixel] = G0[pixel] * (ADU - P0[pixel])

case 01:
output[pixel] = G1[pixel] * (ADU – P1[pixel])

case 11:
output[pixel] = G2[pixel] * (ADU – P2[pixel])

end switch
end for

JUNGFRAU - conversion
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• Comparing ADUs before this procedure is comparing apples and oranges, if gain 
bits are set differently
- summation, visualization, etc. are valid only operation after this procedure
- compression is only efficient for converted data (as conversion cuts noise)

• To operate JUNGFRAU in a comfortable way, this conversion must happen real 
time

• Aim: Conversion online at 1-2 kHz for the detector

JUNGFRAU – conversion is important

Page 10



• Plot on the right presents profiling of 
conversion procedure, geometry 
expansion (512x1024 -> 514x1030), and 
compression (bshuf/LZ4)

• Saturates 4 socket Intel Xeon server at 
around 500 Hz for 4 Mpixel detector

JUNGFRAU conversion – CPU profiling results
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See: “JUNGFRAU detector for brighter x-
ray sources: Solutions for IT and data 
science challenges in macromolecular 
crystallography” Leonarski et al. 
Structural Dynamics (2019)
https://doi.org/10.1063/1.5143480

https://doi.org/10.1063/1.5143480


• The results on the previous slide were not including UDP receiving, which is also 
a challenge

• It would be only worse:

- Data from network card travel between kernel buffers, increasing memory 
bandwidth needs

- Competition for memory bandwidth and CPU cache

• We had to look for another solution to this problem (massively parallel solution 
would be not sustainable)

JUNGFRAU - receiving
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POWER / OpenCAPI / FPGA architecture
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• Real-time performance
- FPGA design is cycle-accurate, with fixed latency and throughput

• Large memory throughput
- FPGAs with HBM2 have 460 GB/s bandwidth to 8 GB large memory

• Ethernet on-board
- FPGA are made to work with network, often having dedicated “hard” cores for 

ethernet

• But development of FPGAs is difficult and time consuming
- Hardware description languages
- Need to be Linux kernel expert

FPGA are perfect devices for data acquisition
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• C/C++ compiler to produce 
hardware design language (Verilog 
or VHDL)

• All code is valid C++ code, it can be 
executed on CPU and functionally is 
generally equivalent (besides 
parallelism)

• Dedicated pragma to guide FPGA 
synthesis

• It is generally understandable for 
software developers, but code may 
look strange

High-level synthesis
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Bitshuffle for 16-bit numbers 

HLS compiler can pipeline 
functions/loops to fix latency and 

throughput



• Available in Xilinx Virtex Ultrascale+

• For VU33/35P:
- Size: 8 GB
- Bandwidth: up to 460 GB/s
- Latency (worst case): up to 1 microsecond

• Complex architecture
- 32 x 256-bit AXI3 interfaces
- Either operating as 32 separate memories
- or as single memory with crossbar (at the cost of up to 

50% throughput)

High-bandwidth memory
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• PCI Express is an industry standard peripheral 
bus

• PCI Express direct memory access (DMA) is 
operating on physical addresses:

Þ need to maintain own driver
Þ translation to virtual addresses is 

responsibility of developer
Þ need understanding of CPU and kernel 

memory mechanisms (streaming memory vs. 
consistent memory, pinning, cache coherency) 

• Only limited number of devices can benefit from 
PCIe Gen4 standard 
(not many FPGAs with G4 x16)

PCI Express DMA
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• IBM POWER9 showed great numbers for 
I/O and memory throughput in Summit 
and Sierra supercomputers

• IBM designed own memory coherent 
interface for accelerators 
(CAPI/OpenCAPI), which has advantages 
over PCIe

POWER architecture
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Source: Wikipedia



OpenCAPI
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FPGA 
board

POWER9 
CPU

OpenCAPI 
cable



OpenCAPI
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FPGA 
board

POWER9 
CPU

OpenCAPI 
cable

• Predecessor CAPI => proprietary IBM 

• Communication over PCIe physical lines 
(but different protocol, with lower overheads)

• OpenCAPI => consortium model

• Dedicated cabling (8 x 25 Gbit/s lines)

• For POWER10 – also memory interface (allowing to have any 
type of memory attached to CPU + to share memory over 
network)



• Similar difference what 80286/80386 virtual 
mode brought to software development

• In OpenCAPI one needs single kernel operation 
=> Attach accelerator to running process 

• Then, accelerator has access to virtual address 
space of running process – it is FPGA that is 
initiating the communication 

• All security/reliability/efficiency/coherency 
mechanisms in CPU and kernel are available 
transparently to OpenCAPI attached accelerator
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What difference brings OpenCAPI?

Source: Wikipedia



• Main function for the action contains a pointer to virtual address space
- On device the pointer will be synthesized as 1024-bit master memory-mapped 

AXI interface
- On CPU this pointer has to be just set to zero (which is first address of virtual 

address space)

• Any cell in virtual memory is just accessed as offset from this pointer

• Only requirement is that memory is aligned to 128-bytes
- No special memory allocator, malloc or mmap is fine
- No pinning/registering

• The same memory buffer class for both simulation and working with device

• There is also 4 MiB memory-mapped register space (like PCIe BAR)
- On device implemented as slave AXI-lite (32-bit)

How to develop with OpenCAPI?
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• Open source “shell” maintained by IBM

• http://github.com/OpenCAPI/oc-accel

• Provides ready made tool to work with OpenCAPI (from transceiver setup 
to AXImm bridge)

• Provides preconfigured interfaces for I/O peripherals (HBM, 100G, NVMe)

• Provides simulation environment
- One can simulate both SW and HW in a single simulation (both user 

FPGA design and software are not modified from their “real” 
implementation)

OC-Accel
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Jungfraujoch – FPGA implementation
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Jungfraujoch server

Ethernet 
UDP/IP

Dark 
current Conversion Strong 

pixel finder Bitshuffle Memory 
writer

FPGA board with OpenCAPI interface

- Data acquisition
- Initial data analysis

- Pre-compression
(2.5 Mpixel/board for JF)

Up to 50 GB/s acquisition and 
data analysis in a single 2U 

IBM POWER9 server with 1-4 FPGA 
boards

Frame 
summation
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Jungfraujoch FGPA streaming design

Modular design

• Stream of data handled by successive cores doing work in parallel
à throughput and latency of each core is determined by the hardware design

• Extra stages can be relatively simply added, option to bypass cores

• All cores are C++ functions, connected with AXI-Stream FIFOs

• As buffering is expensive on FPGA, it is best suited for algorithm that have limited 
dependencies between frames

Ethernet 
UDP/IP

Dark 
current Conversion Strong 

pixel finder Bitshuffle Memory 
writer

Frame 
summation
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Jungfraujoch implementation on VU33P FPGA

Spot finding
HBM

Gain

Pedestal

Write data

OpenCAPI

100G
UDP



Jungfraujoch FPGA power usage is 18 W/board 
for the whole streaming functionality
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Xilinx Vivado Power Report
2 boards for 4 Mpixel JUNGFRAU and 4 boards for 10 Mpixel JUNGFRAU



Software tests Hardware simulation

Seconds Hours

GCC + Catch2 framework OCSE + Cadence Xcelium

C++ Hardware description language

Can cover multiple functionalities and 
scenarios (> 90% HLS code coverage)

Very close to real hardware behavior

Code can still fail on device, due to 
deadlock in FIFOs

Can only test 1-2 functionalities in 
reasonable time

Testing of Jungfraujoch
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OCSE = OpenCAPI simulation engine

Allows to simulate fully functional OpenCAPI interconnect on x86 system, 
can be run with multiple HW simulators



• Software tests are cheap, can be 
done from C++ IDE while working 
on the code

• Both can be scripted for CI 
pipeline, e.g. Gitlab at PSI

• Success of software tests is 
prerequisite to run hardware 
tests

• After hardware tests, FPGA image 
is built (both for on device testing 
and to know if there is any 
problem in timing closure)

Testing of Jungfraujoch
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• Detector and data acquisition system was sent in 
November for an experiment in Photon Factory, KEK

• More than 2,000 datasets collected for protein 
targets, few real-life native-SAD structures solved

• Due to pandemic, detector support and 
development (including deployment of new FPGA 
design) was done fully remotely from Switzerland

Commissioning in KEK (Jan – May 2021)
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BL-1A Photon Factory
JUNGFRAU detector (up) 
tested in helium chamber 

for native-SAD 
measurements with 3.75 

keV X-rays
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Structure of Nucleocapsid Phosphoprotein from 
SARS-CoV-2 solved in 1 second 

• Crystal was previously measured with 
conventional setup at our beamline –
with measurement taking longer than 
one minute

• With JUNGFRAU detector and 
OpenCAPI readout, 2000 images 
collected in one second allowed to 
solve structure of this protein

• Experimental team: Filip Leonarski, Sylvain 
Engilberge, Vincent Olieric, Meitian Wang (MX 
Group), Aldo Mozzanica (PSI Detector Group)

• SARS-CoV-2 protein was produced by  Zinzula, L., 
Basquin, J., Bracher, A., Baumeister, W. (MPI, 
Martinsried)



Possible gain from using FPGA based system
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Possible gain from using FPGA based system
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