
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Boost your high bandwidth data
acquisition by adding OpenCAPI and
memory coherency to FPGA

Filip Leonarski :: Beamline Data Scientist :: Macromolecular Crystallography

Page 1

• Introduction: Macromolecular crystallography at synchrotrons and X-ray
detectors

• Technology: POWER + OpenCAPI

• Solution: Jungfraujoch

Plan

Page 2

Paul Scherrer Institute

Page 3

SwissFEL
Swiss Light

Source

Swiss Alps

• MX is a technique routinely used to determine
3D structure of proteins at synchrotron
beamlines (e.g. ~50% users of Swiss Light
Source)

• MX is widely used in structure-based drug
discovery (including COVID-19)

• >140,000 high-resolution structures have been
determined to date (biosync.org)

• Hybrid pixel X-ray detectors (e.g. PILATUS,
EIGER) have make revolutionary impact on MX

Macromolecular crystallography (MX)

Page 4

• JUNFGRAU is a hybrid pixel detector
with semiconductor sensor (silicon)
and ASIC

• Pixel size: 75x75 μm

• Composed of modules,
each ~500,000 pixels

• X-ray energy: 2-18 keV

• Frame rate: up to 2.2 kHz

• Designed for X-ray free electron lasers
and synchrotrons

• Streams UDP packets over 10 GbE
lines (2 x 10 GbE / module)

JUNGFRAU X-ray detector

Page 5

Test at VMXi Diamond
Light Source (UK)

Test at BL-1A Photon
Factory KEK (JP)

Test at X06DA Swiss
Light Source (CH)

• 2021
- JUNGFRAU 4 Mpixel 2 kHz
- Up to 18 GB/s data

• 2022
- JUNGFRAU 10 Mpixel 2 kHz
- Up to 46 GB/s data

• Necessary functionality
- Save diffraction images
- Provide live feedback

(do frames contain Bragg spots?)

• We save all the data
(no community accepted method to
reduce data on the fly)

JUNGFRAU for Swiss Light Source

Page 6

Page 7

MX detector data rates double every 2 years

0.1

1

10

100

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

Fr
am

e
ra

te
 [G

B/
s]

Year

2007 PSI PILATUS 6 Mpixel 12.5 Hz 0.2 GB/s

2014 Dectris EIGER 16 Mpixel 133 Hz 3.4 GB/s

2019 Dectris EIGER 2 XE 16 Mpixel 400 Hz 13.5 GB/s

2020 PSI JUNGFRAU 4 Mpixel 2200 Hz 18.4 GB/s

2022 PSI JUNGFRAU 10 Mpixel 2200 Hz 46.1 GB/s

• To maximize both sensitivity of detection and dynamic range, JUNGFRAU pixel
has three different gain modes (G0, G1, G2)

• G0 is the most sensitive (low noise), but with dynamic range of about 30 photons
• G2 has dynamic range of >10,000 photons, but noise levels don’t allow for single

photon resolution

• Each pixel in each frame starts in G0 and dynamically switches to G1 and G2

JUNGFRAU – adaptive gain charge integrating
detector

Page 8

F. Leonarski, S. Redford, A. Mozzanica, … , M. Wang
Nat. Methods, 15, 799-804 (2018)

• Each gain mode has its own dark current (pedestal) and gain constants
• Pixels have different sensitivities, so outcome needs to be adjusted
• Conversion procedure to find number of photons is:

for each pixel from 0 to N-1
gain_bit = bits 15:14 from input[pixel]
ADU = bits 13: 0 from input[pixel]
switch (gain_bit)

case 00:
output[pixel] = G0[pixel] * (ADU - P0[pixel])

case 01:
output[pixel] = G1[pixel] * (ADU – P1[pixel])

case 11:
output[pixel] = G2[pixel] * (ADU – P2[pixel])

end switch
end for

JUNGFRAU - conversion

Page 9

• Comparing ADUs before this procedure is comparing apples and oranges, if gain
bits are set differently
- summation, visualization, etc. are valid only operation after this procedure
- compression is only efficient for converted data (as conversion cuts noise)

• To operate JUNGFRAU in a comfortable way, this conversion must happen real
time

• Aim: Conversion online at 1-2 kHz for the detector

JUNGFRAU – conversion is important

Page 10

• Plot on the right presents profiling of
conversion procedure, geometry
expansion (512x1024 -> 514x1030), and
compression (bshuf/LZ4)

• Saturates 4 socket Intel Xeon server at
around 500 Hz for 4 Mpixel detector

JUNGFRAU conversion – CPU profiling results

Page 11

See: “JUNGFRAU detector for brighter x-
ray sources: Solutions for IT and data
science challenges in macromolecular
crystallography” Leonarski et al.
Structural Dynamics (2019)
https://doi.org/10.1063/1.5143480

https://doi.org/10.1063/1.5143480

• The results on the previous slide were not including UDP receiving, which is also
a challenge

• It would be only worse:

- Data from network card travel between kernel buffers, increasing memory
bandwidth needs

- Competition for memory bandwidth and CPU cache

• We had to look for another solution to this problem (massively parallel solution
would be not sustainable)

JUNGFRAU - receiving

Page 12

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

POWER / OpenCAPI / FPGA architecture

Page 13

• Real-time performance
- FPGA design is cycle-accurate, with fixed latency and throughput

• Large memory throughput
- FPGAs with HBM2 have 460 GB/s bandwidth to 8 GB large memory

• Ethernet on-board
- FPGA are made to work with network, often having dedicated “hard” cores for

ethernet

• But development of FPGAs is difficult and time consuming
- Hardware description languages
- Need to be Linux kernel expert

FPGA are perfect devices for data acquisition

Page 14

• C/C++ compiler to produce
hardware design language (Verilog
or VHDL)

• All code is valid C++ code, it can be
executed on CPU and functionally is
generally equivalent (besides
parallelism)

• Dedicated pragma to guide FPGA
synthesis

• It is generally understandable for
software developers, but code may
look strange

High-level synthesis

Page 15

Bitshuffle for 16-bit numbers

HLS compiler can pipeline
functions/loops to fix latency and

throughput

• Available in Xilinx Virtex Ultrascale+

• For VU33/35P:
- Size: 8 GB
- Bandwidth: up to 460 GB/s
- Latency (worst case): up to 1 microsecond

• Complex architecture
- 32 x 256-bit AXI3 interfaces
- Either operating as 32 separate memories
- or as single memory with crossbar (at the cost of up to

50% throughput)

High-bandwidth memory

Page 16

• PCI Express is an industry standard peripheral
bus

• PCI Express direct memory access (DMA) is
operating on physical addresses:

Þ need to maintain own driver
Þ translation to virtual addresses is

responsibility of developer
Þ need understanding of CPU and kernel

memory mechanisms (streaming memory vs.
consistent memory, pinning, cache coherency)

• Only limited number of devices can benefit from
PCIe Gen4 standard
(not many FPGAs with G4 x16)

PCI Express DMA

Page 17

• IBM POWER9 showed great numbers for
I/O and memory throughput in Summit
and Sierra supercomputers

• IBM designed own memory coherent
interface for accelerators
(CAPI/OpenCAPI), which has advantages
over PCIe

POWER architecture

Page 18

Source: Wikipedia

OpenCAPI

Page 19

FPGA
board

POWER9
CPU

OpenCAPI
cable

OpenCAPI

Page 20

FPGA
board

POWER9
CPU

OpenCAPI
cable

• Predecessor CAPI => proprietary IBM

• Communication over PCIe physical lines
(but different protocol, with lower overheads)

• OpenCAPI => consortium model

• Dedicated cabling (8 x 25 Gbit/s lines)

• For POWER10 – also memory interface (allowing to have any
type of memory attached to CPU + to share memory over
network)

• Similar difference what 80286/80386 virtual
mode brought to software development

• In OpenCAPI one needs single kernel operation
=> Attach accelerator to running process

• Then, accelerator has access to virtual address
space of running process – it is FPGA that is
initiating the communication

• All security/reliability/efficiency/coherency
mechanisms in CPU and kernel are available
transparently to OpenCAPI attached accelerator

Page 21

What difference brings OpenCAPI?

Source: Wikipedia

• Main function for the action contains a pointer to virtual address space
- On device the pointer will be synthesized as 1024-bit master memory-mapped

AXI interface
- On CPU this pointer has to be just set to zero (which is first address of virtual

address space)

• Any cell in virtual memory is just accessed as offset from this pointer

• Only requirement is that memory is aligned to 128-bytes
- No special memory allocator, malloc or mmap is fine
- No pinning/registering

• The same memory buffer class for both simulation and working with device

• There is also 4 MiB memory-mapped register space (like PCIe BAR)
- On device implemented as slave AXI-lite (32-bit)

How to develop with OpenCAPI?

Page 22

• Open source “shell” maintained by IBM

• http://github.com/OpenCAPI/oc-accel

• Provides ready made tool to work with OpenCAPI (from transceiver setup
to AXImm bridge)

• Provides preconfigured interfaces for I/O peripherals (HBM, 100G, NVMe)

• Provides simulation environment
- One can simulate both SW and HW in a single simulation (both user

FPGA design and software are not modified from their “real”
implementation)

OC-Accel

Page 23

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Jungfraujoch – FPGA implementation

Page 24

Page 25

Jungfraujoch server

Ethernet
UDP/IP

Dark
current Conversion Strong

pixel finder Bitshuffle Memory
writer

FPGA board with OpenCAPI interface

- Data acquisition
- Initial data analysis

- Pre-compression
(2.5 Mpixel/board for JF)

Up to 50 GB/s acquisition and
data analysis in a single 2U

IBM POWER9 server with 1-4 FPGA
boards

Frame
summation

Page 26

Jungfraujoch FGPA streaming design

Modular design

• Stream of data handled by successive cores doing work in parallel
à throughput and latency of each core is determined by the hardware design

• Extra stages can be relatively simply added, option to bypass cores

• All cores are C++ functions, connected with AXI-Stream FIFOs

• As buffering is expensive on FPGA, it is best suited for algorithm that have limited
dependencies between frames

Ethernet
UDP/IP

Dark
current Conversion Strong

pixel finder Bitshuffle Memory
writer

Frame
summation

Page 27

Jungfraujoch implementation on VU33P FPGA

Spot finding
HBM

Gain

Pedestal

Write data

OpenCAPI

100G
UDP

Jungfraujoch FPGA power usage is 18 W/board
for the whole streaming functionality

Page 28

Xilinx Vivado Power Report
2 boards for 4 Mpixel JUNGFRAU and 4 boards for 10 Mpixel JUNGFRAU

Software tests Hardware simulation

Seconds Hours

GCC + Catch2 framework OCSE + Cadence Xcelium

C++ Hardware description language

Can cover multiple functionalities and
scenarios (> 90% HLS code coverage)

Very close to real hardware behavior

Code can still fail on device, due to
deadlock in FIFOs

Can only test 1-2 functionalities in
reasonable time

Testing of Jungfraujoch

Page 29

OCSE = OpenCAPI simulation engine

Allows to simulate fully functional OpenCAPI interconnect on x86 system,
can be run with multiple HW simulators

• Software tests are cheap, can be
done from C++ IDE while working
on the code

• Both can be scripted for CI
pipeline, e.g. Gitlab at PSI

• Success of software tests is
prerequisite to run hardware
tests

• After hardware tests, FPGA image
is built (both for on device testing
and to know if there is any
problem in timing closure)

Testing of Jungfraujoch

Page 30

• Detector and data acquisition system was sent in
November for an experiment in Photon Factory, KEK

• More than 2,000 datasets collected for protein
targets, few real-life native-SAD structures solved

• Due to pandemic, detector support and
development (including deployment of new FPGA
design) was done fully remotely from Switzerland

Commissioning in KEK (Jan – May 2021)

Page 31

BL-1A Photon Factory
JUNGFRAU detector (up)
tested in helium chamber

for native-SAD
measurements with 3.75

keV X-rays

Page 32

Structure of Nucleocapsid Phosphoprotein from
SARS-CoV-2 solved in 1 second

• Crystal was previously measured with
conventional setup at our beamline –
with measurement taking longer than
one minute

• With JUNGFRAU detector and
OpenCAPI readout, 2000 images
collected in one second allowed to
solve structure of this protein

• Experimental team: Filip Leonarski, Sylvain
Engilberge, Vincent Olieric, Meitian Wang (MX
Group), Aldo Mozzanica (PSI Detector Group)

• SARS-CoV-2 protein was produced by Zinzula, L.,
Basquin, J., Bracher, A., Baumeister, W. (MPI,
Martinsried)

Possible gain from using FPGA based system

Page 33
Courtesy: B. Mesnet (IBM)

Possible gain from using FPGA based system

Page 34
Courtesy: B. Mesnet (IBM)

MX Group (PSI)
• Vincent Olieric
• Takashi Tomizaki
• Chia-Ying Huang
• Sylvain Engilberg
• Justyna Wojdyła
• Meitian Wang

Detector Group (PSI)
• Aldo Mozzanica
• Martin Brückner
• Carlos Lopez-Cuenca
• Bernd Schmitt

Science IT (PSI)
• Leonardo Sala

Controls (PSI)
• Andrej Babic
• Leonardo Hax-Damiani

SLS management (PSI)
• Oliver Bunk

Photon Factory, KEK
• Naohiro Matsugaki
• Yusuke Yamada
• Masahide Hikita

MAX IV
• Jie Nan
• Zdenek Matej

Uni Konstanz
• Kay Diederichs

LBL
• Aaron Brewster

DLS
• Graeme Winter

ESRF
• Jerome Kieffer

CERN
• Niko Neufeld

IBM Systems (France)
• Alexandre Castellane
• Bruno Mesnet

InnoBoost SA
• Lionel Clavien

Acknowledgements

Page 35

