
:
Recent development and status

of beam physics codes for
heterogenous platform

R. De Maria, G. Iadarola

Particles beam physics codes

Simulate particle trajectories inside accelerator structures

Relativistic Newton Law: ሶ𝑝 = 𝑚 𝛾𝐹

Lorenz force: 𝐹 = 𝑞(𝐸 + 𝑣 × 𝐵)

Maxwell Equations:

∇ ⋅ B = 0; ∇ ⋅ E = 𝜌/𝜖0;

∇ × 𝐸 +
𝜕𝐵

𝜕𝑡
= 0; ∇ × 𝐵 +

1

𝑐2
𝜕𝐸

𝜕𝑡
= 𝜇Ԧ𝐽

Synchrotron radiation…
Particle matter interactions…
Secondary electron emission…

B

Physics of the simulations

Type of simulations (1)

Single particle for one turn: follows one particle and studies the
perturbation of the motion.

Type of simulations (2)

Many single particles: tracks many particles for many turns to
understand the long-term stability and the beam lifetime.

Type of simulations

Many interacting particles: tracks many particles and compute the
interaction between particles and with the e.m. field surrounding them.

Particle matter interactions: track many
particle and compute the interaction with
matter such as electron extraction from
surfaces, elastic and inelastic interaction with
collimators or residual gasses

Type of simulations

GPU computing on Beam Physics codes

GPU are very attractive because many simulations are embarrassingly parallel and often without
branching.

Even in case of interactions, electromagnetic solvers (e.g. FFT based) can be also highly efficient on GPUs.

Code development needs in ABP

Context

• Codes to be continuously tailored for specific studies
(generic codes would be too slow)

• Staff develop very often part-time, students/fellows
often with no strong computing background,
numerical methods in the field not well documented.

• High throughput is needed to study large parameter
spaces.

• Low latency needed for decision taking studies.

• GPUs provide more resources and/or enable
computations otherwise not possible.

Requirements

• Rapid developing environment based
on popular and simple programming
language with large library ecosystem.

• Code immediately runnable on CPU
and NVidia, AMD, Intel GPU (hardware
is available today in user machine and
datacenters).

• First implementation needs to achieve
close to maximum performance. Often
no time left for optimizations.

Code structure and technology choices

• Code organized in Python packages.

• User interactions via Python scripts.

• Data structures described, allocated and fully exposed (r/w) in Python including GPU (avoid unnecessary copy).

• Performance critical code written in C with using automatically generated C-API from Python.

• Code compiled at run time and on-demand:
• Allows problem specific optimizations essential on GPU

• Reduce writing, testing, executing cycle

• Dependencies:
• numpy: allocate and exchange memory

• cffi (and a C compiler): generates binary Python modules that can be imported at run time and prepare arguments

• cupy (and a cuda driver): implements rich numpy-like array on device and compiles cuda kernels

• pyopencl (and OpenCL drivers): wraps OpenCL API and implement a basic numpy-like array

OpenCL status

Support of OpenCL is one of the reason we write C instead of C++ code (other being simplicity).

OpenCL 1.2 has been stable and supported since 2011.

Practically any hardware has both a proprietary and an open-source implementation.

Device language Cuda HIP Sycl OpenCL Python

Intel/AMD CPU No No OneAPI POCL, OneAPI Numba

Intel GPU No No OneAPI Intel-compute, mesa No

Nvidia GPU Yes Rocm OneAPI, computeCPP Nvidia-driver, mesa, POCL Numba

AMD GPU
(navi)

No Promised No AMDGPU, mesa No

AMD GPU
(vega, cdna)

hipify Rocm hipsycl AMDGPU, ROCM, mesa Numba

Qualcom Adreno, ARM
Mali, PowerVR

No No No Android No

Despite many claims, developments continue well in 2021: 1.2 support in mesa, 3.0 support intel, nvidia.
OpenCL does not look is going away, best protection against vendor lock-in…

Status after 1 year of development

Xobjects
interface to different computing plaforms

(CPUs and GPUs of different vendors)

Xfields
computation of EM fields
from particle ensembles

Xtrack
single particle

tracking engine

Xpart
generation of particles

distributions

P
h

ys
ic

s
m

o
d

u
le

s

Main goal:
• fast development cycle
• easy to experiment with different data structures
• student friendly

Resource invested in 2021:
• Infrastructure: 2 devs for 0.5 FTE
• Code porting: 2 devs+ about 5 experts for 0.5 FTE

Results obtained:
• Porting about 20 users to new codes.
• Converting 150 kLOC into 10 kLOC (code) + 10kLOC

(test + examples)

http://github.com/xsuite
https://indico.cern.ch/event/1076583/contributions/4527801

http://github.com/xsuite
https://indico.cern.ch/event/1076583/contributions/4527801

Xobject structure

BufferNumpy:
int8 numpy array

BufferPyopencl:
OpenCL buffer

BufferCupy:
int8 cupy array

Buffers: growable byte blob with
memory allocator

Kernels: prepare function
arguments, run code, convert results

KernelCpu:
Holds cffi functions

KernelPyopencl:
Holds OpenCL kernels

KernelCupy:
Hold Cuda kernels

Contexts: create buffers and
kernels from C annotated sources

ContextCpu:
Holds compiler settings

ContextPyopencl:
Holds OpenCL context

ContextCupy:
Hold cuda device

Types: define memory layout, allocate
data in buffer, used by C-API generator

Struct, Array, Ref, Union, UnionRef:
Building blocks to define custom data structures

C-API generator

13

import xobjects as xo

class DataStructure(xo.Struct):
a = xo.Float64[:] # Dynamic Array
b = xo.Float64[:] # Dynamic Array
c = xo.Float64[:] # Dynamic Array
s = xo.Float64 # Scalar

A Xobjects Class can be defined as follows:

ctx = xo.ContextCpu()
ctx = xo.ContextCupy() # for NVIDIA GPUs

obj = DataStructure(_context=ctx,
a=[1,2,3], b=[4,5,6],
c=[0,0,0], s=0)

Independently on the context, the object is accessible in read/write directly
from Python. For example:

print(obj.a[2]) # gives: 3
obj.a[2] = 10
print(obj.a[2]) # gives: 10

An instance of our class can be instantiated on CPU or GPU by passing the
appropriate context

Xobjects – data manipulation in Python
The main features of Xobjects can be illustrated with a simple example (Xsuite physics
packages are largely based on the features illustrated here)

Nested classes, tagged unions and
references also supported…
Dynamic shapes frozen after allocation.

Encourage data allocation on device only. Not
unusual a 2 GB host to control 40 GB GPU

Essential for debugging, shortcut for one-time
configuration before expensive calculations

14

The definition of a Xobject class in Python, allows the
generation of a set of functions (C-API) that can be used in C
code to access the data.

// ...

// Get the length of the array DataStructure.a
int64_t DataStructure_len_a(DataStructure obj);

// Get a pointer to the array DataStructure.a
ArrNFloat64 DataStructure_getp_a(DataStructure obj);

// Get an element of the array DataStructure.a
double DataStructure_get_a(const DataStructure obj, int64_t i0);

// Set an element of the array DataStructure.a
void DataStructure_set_a(DataStructure obj, int64_t i0, double value);

// get a pointer to an element of the array DataStructure.a
double DataStructure_getp1_a(const DataStructure obj, int64_t i0);

// ... similarly for b, c and s

Xobjects – data access from C

print(DataStructure._gen_c_decl(conf={}))

which gives (without the comments):

They can be inspected by:

From before
class DataStructure(xo.Struct):

a = xo.Float64[:]
b = xo.Float64[:]
c = xo.Float64[:]
s = xo.Float64

ctx = xo.ContextCpu() # CPU
ctx = xo.ContextCupy() # GPU

obj = DataStructure(_context=ctx,
a=[1,2,3], b=[4,5,6],
c=[0,0,0], s=0)

Concise, stable and user-friendly API:
<typename>_<op>_<name1>_...(<root>,<index1>, [<value>])

More to come…

15

A C function that can be parallelized when running on GPU is called "Kernel".

The Xobjects context compiles the function from Python:

ctx.add_kernels(
sources=[src],
kernels={'myprod': xo.Kernel(

args = [xo.Arg(DataStructure, name='ob'),
xo.Arg(xo.Int32, name='nelem')],

n_threads='nelem')
})

src = '''
/*gpukern*/
void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //vectorize_over ii nelem
double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end_vectorize
}
'''

Example: C function that computes obj.c = obj.a * obj.b

Xobjects – writing cross-platform C code

From before
class DataStructure(xo.Struct):

a = xo.Float64[:]
b = xo.Float64[:]
c = xo.Float64[:]
s = xo.Float64

ctx = xo.ContextCpu() # CPU
ctx = xo.ContextCupy() # GPU

obj = DataStructure(_context=ctx,
a=[1,2,3], b=[4,5,6],
c=[0,0,0], s=0)

The kernel can be easily called from Python and is executed on CPU or GPU based on the context:

obj.a contains [3., 4., 5.] , obj.b contains [4., 5., 6.]
ctx.kernels.myprod(ob=obj, nelem=len(obj.a))
obj.c contains [12., 20., 30.]

(Comments in red are Xobjects
annotation, defining how to
parallelize the code on GPU)

Potentially unnecessary step if we bother parsing C
(pycparser could help but…)

/*gpukern*/ void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //vectorize_over ii nelem

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end_vectorize
}

void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //autovectorized

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end autovectorized
}

Xobjects – code specialization
Before compiling, Xobjects specializes the code for the chosen computing platform.

• Specialization and compilation of the C code are done at runtime through Python

Code written by the user

Code specialized for CPU
__kernel void myprod(DataStructure ob, int nelem){

int ii; //autovectorized
ii=get_global_id(0); //autovectorized

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

//end autovectorized
}

Code specialized for GPU (OpenCL)

Could use also OpenMP

/*gpukern*/ void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //vectorize_over ii nelem

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end_vectorize
}

void myprod(DataStructure ob, int nelem){

for (int ii=0; ii<nelem; ii++){ //autovectorized

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end autovectorized
}

Xobjects – code specialization
Before compiling, Xobjects specializes the code for the chosen computing platform.

• Specialization and compilation of the C code are done at runtime through Python

Code written by the user

Code specialized for CPU
__global__ void myprod(DataStructure ob, int nelem){

int ii; //autovectorized
ii=blockDim.x * blockIdx.x + threadIdx.x; //au
if (ii<nelem){

double a_ii = DataStructure_get_a(ob, ii);
double b_ii = DataStructure_get_b(ob, ii);
double c_ii = a_ii * b_ii;
DataStructure_set_c(ob, ii, c_ii);

}//end autovectorized
}

Code specialized for GPU (Cuda)

Could use also OpenMP

class Point(xo.Struct):
x = xo.Float64
y = xo.Float64

class Triangle(Point[3]):
pass

class Mesh(Triangle[:]):
pass

/*gpufun*/
double Mesh_get_x(

const Mesh/*restrict*/ obj,
int64_t i0,
int64_t i1){

int64_t offset=0;
offset+=16+i0*48;
offset+=i1*16;
return *(/*gpuglmem*/double*)((/*gpuglmem*/char*) obj+offset);

}

Xobjects – Data types and API

Array of array of struct

API generated

/*gpufun*/
double Mesh_get_x(

const Mesh/*restrict*/ obj,
int64_t i0,
int64_t i1){

int64_t offset=0;
offset+=16+i0*72;
offset+=i1*8;
return *(/*gpuglmem*/double*)((/*gpuglmem*/char*) obj+offset);

}

class Triangle(xo.Struct):
x = xo.Float64[3]
y = xo.Float64[3]

class Mesh(Triangle[:]):
pass

Array of struct of array

C-API stable against some
data layout changes.

class Mesh(xo.Struct):
x = xo.Float64[:,3]
y = xo.Float64[:,3]

Struct of array of array

class Mesh(xo.Struct):
x = xo.Float64[3:1,::0]
y = xo.Float64[3:1,::0]

Struct of array of array

Conclusions

GPUs open computing capacity and enable new computation otherwise prohibitive.

Developing portable code is extremely challenging:

• Multiple incompatible languages and framework, vendors not helping, but rather increasing fragmentation

In ABP we decided to:

• Leverage Python and ecosystem for user API, and low-level code C generation.

• Support OpenMP, Cuda and OpenCL allows to cover and exploit existing resources.

• In 2021 we invested half time in framework and half in porting code and we obtained performance not
lower than (our) hand made code and functionality coverage.

Challenges:

• Will the approach be future proof?

• Will we manage to keep the cost of the framework low for more complex code?

• Are we maximizing performance given the effort?

