First Constraints on Coherent Elastic Neutrino Nucleus Scattering by CONUS

Thomas Hugle (on behalf of the CONUS collaboration)
Max-Planck-Institut für Kernphysik, Heidelberg
Neutrino Cross Talk, 27.11.2020

Coherent Elastic Neutrino Nucleus Scattering

 1973: neutral current discovered at CERN

 1974: CEVNS predicted by D. Freedman

Natural sources Artificial sources [A. Bonhomme]

$$d\sigma(E_{\nu},T) \sim G_F^2$$

$$\frac{\mathrm{d}\sigma(E_{\nu},T)}{\mathrm{d}T} \simeq \frac{G_F^2}{4\pi} \underbrace{\left[N - (1 - 4\sin^2\theta_W)Z\right]^2}_{\approx N^2} \underbrace{F^2(q^2)}_{\to 1} M \underbrace{\left(1 - \frac{MT}{2E_{\nu}^2}\right)}_{\to 1}$$

kinematics

Neutrino Sources / Experimental Options

- ν from π decay-at-rest (π -DAR)
- different flavors: $\nu_{\rm e}$, ν_{μ} , $\bar{\nu}_{\mu}$
- \blacktriangleright ν energies of ~20-50 MeV
- Reactors: CONUS
 - ν from fission products (high flux)
 - only $\bar{\nu}_{\mathrm{e}}$
 - ▶ ν energies of < 10 MeV

COHERENT Experiment

Hg

<u>Capture</u>

 $\tau \approx 2200 \text{ ns}$

[A. Konovalov (talk)]

Located in the US at the Oak Ridge spallation neutron

source (SNS)

Pulsed beam

• ν flux: 4.3 * 10⁷ cm⁻² s⁻¹ @ 20 m distance

• 8 m w.e. overburden

τ≈26 ns

results published

COHERENT Results

• First CEνNS observation in 2017 (6.7σ CL) with CsI[Na]

• Updated results at Magnificent CEvNS workshop 2020: twice the exposure, improved analysis (11.6σ CL)

CONUS Collaboration

- H. Bonet, A. Bonhomme, C. Buck, J. Hakenmüller, J. Hempfling, J. Henrichs,
- G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, E. Van der Meeren
 - Max Planck Institut für Kernphysik (MPIK), Heidelberg
- K. Fülber, R. Wink
 - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

CEVNS at Reactors

Low noise threshold

Low background at shallow depth

CONUS Experimental Site

[A. Bonhomme]

Overburden:

► 10-45 m w.e. (angle-dependent)

muon-induced background

CONUS experiment:

- Four 1kg low threshold Ge detectors
- electric cryocoolers
- elaborate shield

Ain't no lab!

No remote control, no cryogenic liquids, ...

Reactor core:

- thermal power3.9 GW
- neutrino flux
 2 * 10¹³ cm⁻² s⁻¹
 @ 17 m distance
- high duty cycle (~1 month/yr off)

CONUS Detectors

Four p-type point contact HPGe detectors (1kg each)

For full discussion see

arXiv:2010.11241 [ins-det]

- ▶ pulser resolution: ≤ 80 eV_{ee}
- ▶ energy threshold: ~300 eV_{ee}
- low background components
- electric cooling (instead of N₂)
 necessary at KBR

CONUS Shield Design

Active muon veto:

suppress cosmic ray muon-induced background

[Inspired by the GIOVE spectrometer shield design (MPIK, Eur. Phys. J. C (2015) 75: 531)]

Lead (Pb):

- shield radioactivity
- needs to have low radioactivity itself

Steel cage:

- keep everything together
- flushed with breathing air to reduce radon

moderate & capture neutrons

Reactor-Correlated Neutrons

Neutron measurements with Bonner spheres:

- ▶ mostly thermalized (~80% of all)
- correlated with thermal power

For full discussion see Eur. Phys. J. C (2019) 79:699 (in cooperation with PTB)

Monte Carlo (MC) simulation:

- detailed propagation of n from reactor core to CONUS
- propagate n (and γ) through CONUS shield:
 0.012 ± 0.006 kg⁻¹ d⁻¹ in [0.3, 1] keV_{ee}
- ► negligible compared to CEVNS: (~0.2 kg⁻¹ d⁻¹ in [0.3, 1] keV_{ee} for k=0.2)

Background Suppression

Residual backgrounds described by Monte Carlo simulations:

- muon-induced (after ~97% vetoed)
- metastable Ge states
- ► ²¹⁰Pb in shield and detector

▶ radon

Total suppression factor: 10⁴

Data Selection & Noise Cuts

Noise-temperature correlation cut

Time-difference distribution cut

Run-1/2 exposure after cuts:

ON 248.7 kg d OFF 58.8 kg d

13/19

Region of Interest (ROI) for CEvNS

Criteria:

- trigger efficiency: ~100%
- ratio of electronic noise to background MC: < 4
 - fit electronic noise with exponential

Det.	RUN	ON [d]	OFF [d]	ROI $[\text{keV}_{ee}]$
<u>C1</u>	1	96.7	13.8	0.296 - 0.75
C2	1	14.6	13.4	0.311 - 1.00
C3	1	97.5	10.4	0.333 - 1.00
<u>C1</u>	2	19.6	12.1	0.348 - 0.75
C3	2	20.2	9.1	0.343 - 1.00
$\overline{\text{total}}$		248.7	58.8	

Data Analysis Overview

Input for analysis:

- theoretical expectation for CEvNS
- reactor description
 - fission fractions & thermal power known
 - Huber & Mueller parametrization
 - + Daya Bay correction
- background description
 - Monte Carlo for physics events
 - exponential fit for electronic noise
- selected data for ON / OFF

(Binned Log) Likelihood

- Fit ON and OFF data together (all detectors and runs)
- Include additional (independent) knowledge via pull terms

$$\begin{split} \log \mathcal{L} &= \log \mathcal{L}_{\rm ON} + \log \mathcal{L}_{\rm OFF} + \text{pull terms} \\ \text{with} \\ &\log \mathcal{L}_{\rm ON}(s,b,\Theta_{\rm thr_1},\Theta_{\rm thr_2},\Theta_{\rm rea},\Theta_{\rm det},\Delta E) \end{split}$$

• The parameters with uncertainties (in brackets) are:

 $\log \mathcal{L}_{\mathrm{OFF}}(b, \Theta_{\mathrm{thr}_1}, \Theta_{\mathrm{thr}_2}, \Theta_{\mathrm{det}}, \Delta E)$

- s: signal (scanned over)
- b: background MC normalization (free)
- $\theta_{thr1/2}$: electronic noise (free)
- θ_{rea}: reactor neutrino spectrum
 (~3%; thermal power, fission fractions)

- θ_{det} : detector / DAQ (1-5%)
- ΔE: energy scale uncertainty (10-20 eV_{ee})

First Results by CONUS (Run-1/2)

Dominant uncertainty:

quenching

[Scholz et al, Phys. Rev. D 94, 122003 (2016)]

 $< 0.34 cts d^{-1} kg^{-1} (90\% CL) for k = 0.18$ (Scholz et al., 2016),

k > 0.27 disfavored

For full discussion see

arXiv:2011.00210 [hep-ex]

Beyond Standard Model Searches

- Neutrino magnetic moment
 - introduces coupling to electrons (& nucleus)
- NSIs (non-standard interactions)
 - general parametrization of neutrino interactions
- Light mediators
 - new scalar or vector mediators

Summary & Outlook

- Overview of CONUS and (short) comparison to COHERENT:
 - ▶ first CEvNS results of CONUS (RUN-1/2 data), cf. arXiv:2011.00210 [hep-ex]
 - best limit on CEvNS with reactor neutrinos achieved so far
 - signal expectation highly quenching dependent
 - quenching parameters of k > 0.27 excluded
 - a description of the Ge detectors, cf. arXiv:2010.11241 [ins-det]
 - ▶ a detailed description of reactor-correlated backgrounds, cf. Eur. Phys. J. C (2019) 79:699

Future / Current:

- more analyses (BSM) & data
- improved control of environmental parameters
- Brokdorf shuts down end of 2021, leading to significantly more OFF time
- data acquisition upgrades like pulse shape discrimination and anti-coincidence