

653.403 / PHM.515UB EXPERIMENTAL PARTICLE PHYSICS

INTRODUCTION TO THE LECTURE

LINKS

- Moodle @ KFU
 - https://moodle.uni-graz.at/course/view.php?id=84717
 - Use 'Fragen zur Vorlesung'
- online.uni-graz.at
 - https://online.unigraz.at/kfu_online/pl/ui/\$ctx;design=pl;header=max;lang=de/wbLv.wbShowLVDetail?pStpSpNr=641206&pSpracheNr=1
- Slides (Indico) [public]
 - https://indico.cern.ch/event/975141/
- Youtube channel with recordings and videos to calculations with intermediate steps [public]
 - https://www.youtube.com/channel/UC9T3q6DpDJF6iZSMRQeEJTQ

```
20.11.2020 11:45 14:45
27.11.2020 11:00 13:00
<u>27.11.2020</u> 13:30 15:00
04.12.2020 11:00 13:00
04.12.2020 13:30 15:00
11.12.2020 11:00 13:00
<u>11.12.2020</u> 13:30 15:00
18.12.2020 11:00 13:00
<u>18.12.2020</u> 13:30 15:00
<u>15.01.2021</u> 11:00 13:00
15.01.2021 13:30 15:00
22.01.2021 11:00 13:00
22.01.2021 13:30 15:00
29.01.2021 11:00 13:00
29.01.2021 13:30 15:00
```

MODE OF OPERATION

- Lecture is blocked two units / day
- Will record & upload to youtube
- Youtube videos will also replace calculations on the board where useful
- Exam: Oral & very likely also remote three questions from a predefined list

CONTENT

Colliders

- enabling concepts ideas leading to discoveries
- luminosity & energy key collider parameters
- facilities of the past and the present

2. Collisions

- types of collisions
- interplay of e⁺/e⁻ and hadron-hadron collisions
- interrelations with the theoretical description

3. Interaction of particles with matter

- what happens when a particle hits the detector?
- ionization, bremsstrahlung, pair production, ...

4. Detectors

- Gaseous detectors
- Semiconducting detectors
- Scintillators
- Calorimeters
- Particle Identification

5. Experiments

The CERN LHC experiments and beyond

6. Data Analysis

- key techniques for searches and precision measurements
- Interpretation / Statistical tools

COLLIDERS

CERN ACCELERATOR COMPLEX

Angular profile of synchrotron radiation

COLLISIONS

INTERACTION OF PARTICLES WITH MATTER

DETECTORS

EXPERIMENTS

DATA ANALYSIS

Understanding a result:

- Which experiment at which facility is the result from?
- Which dataset (energy, luminosity)?
- How are the particles produced, how they decay and how are the decay products measured?
- How do the final, stable particles interact with the detector, what are the detector concepts, timing, resolution, limiting factors?
- How were the detectors assembled to experiments such that the measurement could be done?
- What are the quantities on the axis, why the choice of the binning, what is the meaning of the error bars?
- What does the figure caption mean?

Figure 4: Distribution of the four-lepton invariant mass for the ZZ \rightarrow 4 ℓ analysis. The points represent the data, the filled histograms represent the background, and the open histogram shows the signal expectation for a Higgs boson of mass $m_{\rm H}=125\,{\rm GeV}$, added to the background expectation. The inset shows the $m_{4\ell}$ distribution after selection of events with $K_D>0.5$, as described in the text.