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1. INTRODUCTION



1.1 CALORIMETER PRINCIPLES

• A calorimeter is a detector which fully absorbs the particles. 

• The signals produced are a measure for the energy of the 

particle, but the particle is lost for further inspection

• The particle initiates a particle shower. Each secondary 

particle deposits energy and produces further particles until 

the full energy is absorbed.

• The composition and shape of the showers depend on the 

type and energy of the primary particle (e±, 𝛾 or hadrons)

• Ideally (but not in practice), the response is linear: Calorimeter 

signal ∝ deposited energy ∝ energy of primary particle. 

• Calorimetry is a widespread technique in particle physics:

• instrumented targets: neutrino exp. / proton decay / cosmic ray

• 4π detectors for collider experiments

• Calorimetry makes use of various detection mechanisms:

• Scintillation, Cherenkov radiation, Ionization, Cryogenic phen.

Convert energy E of incident 

particles to detector response 

S∝E



1.2 THE NEED FOR CALORIMETRY

• Calorimetry measures charged and neutral particles

• Performance of calorimeters improves with energy and is ~constant over 4π

• while a magnetic spectrometer has a strong anisotropy due to B field

• Calorimetry is based on a statistical process.  A particle produces on average N 

secondary particles, where N is proportional to the energy.  The energy 

resolution is dominated by statistical fluctuations of N → the relative energy 

resolution improves with increasing energy.

• Calorimeter measurement Spectrometer measurement (tracking)

• The required thickness of a calorimeter scales only with the logarithm of the 

particle energy.

• Calorimeters can be used to identify particle types due to their shower shapes.

• Calorimeters are important components for the trigger system at hadron 

colliders. Within a few ns complex information on particle energy, particle 

direction, topology of the event, and possible missing energy is available!
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Schematic comparison of the resolution

of calormetry and spectrometer measurements

At high energies,

calorimetry is 

absolutely needed!



1.3 CALORIMETER TYPES

• Two different calorimeters by construction:

• Homogeneous Calorimeters

• Sampling Calorimeters

• Two different applications:

• Electromagnetic calorimeters measure the 

energy of electrons, positrons and photons

• Hadronic calorimeters measure the energy of hadrons
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Homogenous calorimeter (principle) Sampling calorimeter (principle)

electromagnetic shower

hadronic shower



1.4 HOMOGENOUS CALORIMETERS

• Homogenous calorimeter: the detector material is at the same time the absorbing material and the detector.

• Examples for different signal exploited:

• Advantage: Best possible energy resolution achievable

• Disadvantage: Expensive

• Homogenous calorimeters are only used as electromagnetic calorimeters that measure the energy of e± and photons
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1.5 SAMPLING CALORIMETERS

• A sampling calorimeter consists of alternating layers of passive absorbers and active detectors.

• Typical absorbers are materials with high density, 

• e.g.: Fe, Pb, U

• Typical active detectors:

• Plastic or crystal scintillators

• Silicon detectors

• liquid noble gas ionization chambers

• Gas detectors

• Advantages:

• Can optimally choose the absorber and detector material independently and according to the application.

• By choosing a very dense absorber material the calorimeters can be made very compact.

• The passive absorber material is cheap

• Disadvantages:

• Only part of the particles energy is deposited in the detector layers and measured

• Energy resolution is worse than in homogeneous calorimeter (“Sampling-Fluctuations”).
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1.5 SAMPLING CALORIMETERS
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“Schaschlik “ 

e.g. Hera-B calorimeter

wave length shifting fibres

run through a sandwich 

of absorbers and scintillators

Gas detectors:

Using MWPC one can 

read out the ionisation charge.

However, count rate often enough

LAr ATLAS calorimeter

cryogenic -185∘C

active area is segmented 

for high spatial resolution

Ar must be purified but

no/little radiation damage 

Scintillators

e.g. CMS HCal (plastic)

low maintenance 

not very radiation hard



2. ELECTROMAGNETIC CALORIMETERS



2.1 EM SHOWERS IN CALORIMETERS

• Electromagnetic calorimeters measure the energy 

of electrons, positrons and photons.

• High energy electrons, positrons and photons 

interact via Bremsstrahlung and pair production

• shower development scales with radiation length X0

• energy loss is fast, e.m. calorimeters are not thick

• EM calorimeters exist as homogeneous or sampling

1. high energies: bremstrahlung 𝛔brem ∝Z2, X0 ∝Z-2

2. low energies: ionization loss

• Ec is defined as the energy where 1. and 2. are equal

• Simple shower model: Total length s = tmax X0 where tmax = log2(Emax/Ec).
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photon pair creation 

electron bremstrahlungRemember from lecture 3:



2.2 SHOWER DEVELOPMENT AND ENERGY DEPENDENCE
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2.3 CRITICAL ENERGY & MOLIERE RADIUS

• Important for the calorimeter is

• the longitudinal dimension of the shower.

• About 95% of the energy of the incident particle is 

contained within the depth T (semi empirical formula*):

• Rule of thumb: need about 25 X0

• In the transversal plane, 90 (95%) of a shower is 

contained within 1 (2) Moliére radii. R(95%) = 2𝝆M

• The transversal shower profile has a central core in 

which most of the energy is deposited.  

• It is surrounded by a halo. 

• The width of the core is determined by small angle 

scattered e±, whereas the halo develops due to low 

energy photons, which fly a long distance in the 

detector and by large angle Rutherford scattering
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* C. Leroy, F.-G. Rancoita, Rep.Prog.Phys. 63, 505–606 (2000)

Photons

h
igh

e
r Z

Electrons

high Z materials have high multiplicities of low

energy particles. Even though built for TeV!



2.4 ENERGY RESOLUTION

• In an ideal homogeneous calorimeter with infinite dimensions the energy 

resolution is determined by the statistical fluctuations of the number of 

shower particles N

• Maximal number of “detectable” particles is given :

• E is the energy of the primary particle and η is the threshold energy 

of the detector,  i.e. the minimal energy to produce a single detectable 

secondary particle.

• Examples for the threshold energy:

• Ge (Si) detectors: η ≈ 2.9 eV (3.6 eV), Gas detectors: η ≈ 30 eV, 

Plastic scintillators: η ≈ O(100 eV)

1. Sampling fluctuations

• In sampling calorimeters only a small part of the deposited energy is measured.

• The fractions of how much is energy 

is deposited in the absorber and in the

detector varies from event to event: 
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2. Landau fluctuations:

• In case of thin detector layers due to the 

asymmetric energy loss distribution (Landau 

instead of Gaussian distribution), e.g. 

important in gas and silicon detectors.

3. Track length fluctuations:

• Secondary particles are scattered and cross 

the detector planes under various angles.

• From event to event the total track length of 

secondary particles fluctuates

• ⟶ contribution to the energy resolution.

incoming particles

passive absorber

detectors



2.5 ENERGY RESOLUTION PARAMETRISATION

• The energy resolution of a calorimeter can be parameterized using 

• E ………… particle energy in GeV

• c1, c2, c3 …Empirical, detector dependent constants or fit parameters

• The three terms are

• the intrinsic resolution is ∝ c1/√E  

• the term ∝ c2/E is mainly due to electronic noise (independent of E)

(+ pile up fluctuations in high luminosity environments) 

• the constant term c3 is caused by inhomogeneous response, 

calibration errors, dead channels, longitudinal leakage, etc. 

• At high energies the constant term dominates the energy resolution! 

16

contributions to the

energy resolution 



2.6 COMPARISON OF EM CALORIMETERS
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3. HADRON CALORIMETERS



3.1 PRINCIPLES

• Hadron calorimeters measure the energy of charged and neutral hadrons.

• Shower development similar to EM calorimeters

• Extra complication: The strong interaction with detector material

• shower development scales with nuclear absorption length λa

• hadron calorimeters need to be much “thicker”

• Importance of calorimetric measurement of hadrons:

• Charged hadrons: complementary to track measurement

• Neutral hadrons: the only way to measure their energy

• Hadron calorimeters exist only as sampling calorimeters.

• In an experimental set-up the EM calorimeter is 

always in front of the hadron calorimeter

• The CMS ECAL constitutes about 1 nuclear radiation length in front of HCAL



3.2 HADRONIC SHOWER
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high energetic cascade

nucleus

el.-mag.

hadronic

shower 

component

incoming hadron

intra-nuclear 

timescale of cascade 

and spallation ≈10-22 s

de-excitation of the nucleus

timescale ≥ 10-18s

or

evaporation spallation

• Hadrons interact inelastically with a single nuclei in 

the nucleus 

• Secondary hadronic decay products interact with 

other nuclei, leading to shower formation. 

• If neutral pions are produced, they decay to 

photons with subsequent electromagnetic 

showers.

• Between hadronic interactions, charged shower 

particle also ionize the material, leading to an EM 

cascade (also, nuclei can de-excite emitting ɣ)

• The fluctuation of the shower components is large

and, depending on the charge and the momenta of 

the particles, each has a different reconstruction 

efficiency.

• This limits the resolution in reconstructing the 

energy of the incident particle.



3.3 HADRONIC SHOWER DIMENSION

• Hadronic shower dimensions described by the nuclear absorption length λa.

• 95% of a shower is contained in approximately 7.6 λa (about 80 cm in U).

• Rule of thumb: 10 λa required

• ≈95% of the total energy is deposited in a cylinder with radius λa.

• The transversal profile consists of a high energy core. Full width at half maximum 

(FWHM) ≈ 0.1 – 0.5 λa and a halo of low energy particles.

• The absorption of the purely hadronic shower involves energy loss processes 

which do not create measurable signals:

• Nuclear binding energy

• Production of neutrinos and high energy muons

• Kinetic energy of debris of nuclei

• Hadronic showers also always produce an EM component!

• The fraction of the shower energy which goes into the EM shower is determined 

at the first interactions (beginning of the shower).

• large event-by-event fluctuations

• EM and hadronic response not identical – worsening of resolution ∝E,

no improvement with E1/2 !
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C. Leroy, F.-G. Rancoita, Rep.Prog.Phys. 63, 505–606 (2000)



*3.4 COMPENSATING CALORIMETERS

• By a careful choice of 

• the calorimeter active material  - absorber with large Z (U or Pb) 

and detector with low Z

• the detector geometry - optimized thickness of detector and 

absorber, and 

• signal processing - disregard slow hadronic processes such as 

neutron capture with ɣ emission >100ns

a ratio of the shower responses e/h ≈ 1 can be achieved.

• This is called a compensating calorimeter

• Because the ratio EEM/Ehad is dependent on the incident energy, a 

non-compensating calorimeter is non-linear.

• Compensating calorimeters are linear over a large energy range

• Linear calorimeters have better resolution
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Legend:

Helios/NA34 (low transverse momentum 

lepton and photon measurements)

WA1/CDHS (DIS of neutrinos)

WA78@SPS (charmed strange baryon production)

resolution of compensating 

and non-compensating calorimeters



3.5 COMPARISON OF HADRON CALORIMETERS
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4. EXAMPLES



4.1 THE LEAD-TUNGSTATE CALORIMETER OF CMS

Barrel: |η| < 1.48

36 Super Modules

61200 crystals (2x2x23 cm3)

EndCaps: 1.48 < |η| < 3.0, 4 Dees

14648 crystals (3x3x22 cm3)



4.1 THE LEAD-TUNGSTATE CALORIMETER OF CMS
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Barrel: Avalanche photodiodes 

(APD) 

Two 5x5 mm2 APDs/crystal 

Amplification: 50 

QE: ~75% at lpeak= 420 nm 

Endcaps: - Vacuum phototriodes

(VPT) 

Better radiation resistance than 

APDs 

Active area ~ 280 mm2/crystal 

Amplification 8 -10 (B=4T) 

Q.E.~20% at 420 nm 

Endcap ingot

Test beam measurement:



4.2 CMS HCAL

Absorber: Brass (70% Cu / 30% Zn), thickness 50.5 mm and 56.5 mm 

Detector: Plastic Scintillator 

(Kuraray SCSN81), Thickness 3.7 mm 
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Used over a million 

World War II brass 

shell casements 

from the Russian 

Navy. 

CMS HCAL barrel detector

• Plastic scintillators with WLS fibers:

• scintillator light:  410-425 nm (blue-violet)

• fibers absorb re-emit it at 490 nm (green).

• Hybrid Photodiodes (now SiPM) are used 

to convert light into electrical signals.

• Energy resolution about 100%/√E ⊕ 5%



4.3 ATLAS LAR EM CALORIMETER
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Cu electrodes at HV

Spacers define LAr gap 2x2mm

2mm Pb absorber clad

in stainless steel

• The ATLAS ‘accordion’ LAr calorimeter 

covers most of the instrumented area.

• It is a sampling calorimeter with

liquid argon (LAr) and Pb absorber

• Electrodes between two layers of lead 

(2.1mm) allow transversal segmentation, 

the accordion increases the length of the 

ionization path

• The granularity is finest at the beginning 

of the shower development (strips) and 

coarsest at the end.



4.3 ATLAS LAR EM CALORIMETER
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• The ATLAS ‘accordion’ LAr calorimeter 

covers most of the instrumented area.

• It is a sampling calorimeter with

liquid argon (LAr) and Pb absorber

• Electrodes between two layers of lead 

(2.1mm) allow transversal segmentation, 

the accordion increases the length of the 

ionization path

• The granularity is finest at the beginning 

of the shower development (strips) and 

coarsest at the end.



4.4 H1 SPAGHETTI CALORIMETER

• In this type of calorimeter parallel bundles of scintillating fibers are 

embedded in an absorber matrix (e.g. Pb). 

• Fiber diameter typically 0.5–1 mm.

• Advantages: 

• cheap, compensation possible, excellent hermeticity of the detector

• main disadvantage

• no longitudinal segmentation

• Prototypes: 1 mm thick fibers in Pb matrix, 

distance between fibers 2.22 mm

• energy resolution:

• σ(E)/E (e.m.)= 15.7%/√E ⊕ 2% and

• σ(E)/E (hadron.)= 33.3%/√E ⊕ 2.2%.
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THE END!


