PARTICLE IDENTIFICATION

LECTURE 4 PART 5

REFERENCES

- Vorlesung M. Krammer "Teilchendetektoren"
 TU Wien, SS 2015
- Erika Garutti, DESY, Lecture
 "The Physics of Particle Detectors"
- Kolanoski, Wermes"Teilchendetektoren", 2015
- K. Kleinknecht,
 "Detektoren für
 Teilchenstrahlung"
- C. Grupen,"Teilchendetektoren", 1993

BASICS OF PARTICLE IDENTIFICATION

- We know already several methods to identify particles:
 - Identification of muons as the only charged particles penetrating the hadron calorimeter → calorimeter
 - Identify weakly interacting particles by "missing momentum" and "missing energy" (e.g. neutrinos) → hermetic calorimeter/detector systems
 - distinguish e.g. electrons from hadrons by their different calorimetry shower parameters
 - The CMS forward Quartz fibre clorimeter has fibres that start I Icm inwards of the absorber and are typically reached only be hadron showers
 - Identification of long lived particles by the reconstruction of secondary vertices (e.g. particles containing a c or b quark, or a tau lepton) → precise silicon vertex detectors

IDENTIFICATION OF LONG LIVED PARTICLES

- The precise extrapolation of the particle tracks toward the interaction point reveals the existence of two secondary vertices
- Most important experimental feature is the impact parameter resolution
- With current precision tracking and at high momenta, limited by multiple scattering in the beam pipe material
 - See 5 GeV pion example in lecture 3!

LHCb example event: At the primary pp vertex (PV), a B_s^0 is created that decays at the secondary vertex (SV) to a D_s^+ which subsequently decays at the tertiary vertex (TV)

$$pp \to B_s^0 + X \to D_s^+ \mu^- \bar{\nu}_{\mu} + X$$

 $\to K^+ K^- \pi^+ + \mu^- \bar{\nu}_{\mu} + X$

DISTINGUISHING BETWEEN PARTICLES

Long-lived (=stable within the detector) particles can be indirectly inentified by their mass

	е	μ	π+/-	K+, K-	p, n
Mass (MeV/c²)	0,511	106	140	494	938, 940

- In high energy experiments one measurement is usually the momentum p. The momentum of charges particles is calculated from the curvature of the particles track in a magnetic field (Spectrometer measurement, see Lecture 4.2)
- The second measurement is a variable depending on the particle velocity
 (TOF: v, Bethe-Bloch/TPC: β, or Čerenkov/Transition radiation: γ) or energy (calorimetry)
- combine the measurements and calculate mass m from $p = mc\beta\gamma$, $E^2 = c^2p^2 + m^2c^4$

PARTICLE SEPARATION

- Methods and instruments discussed in this chapter:
 - Time of flight measurements
 - Multiple ionisation measurements
 - Cherenkov counters
 - Transition radiation detectors
- Different methods are needed for different momenta ranges!

Separation of π and K, showing energy vs. the approximate length of the detector needed:

TIME-OF-FLIGHT (TOF) MEASUREMENTS

- Detectors used are mostly plastic scintillators, typical time resolution of about $\sigma_t \approx 0, 1 0,3$ ns
- Advantage:
 - particles traverse a constant length
 - simple operating principle

• time of flight

$$\Delta t = \frac{L}{\beta_1 c} - \frac{L}{\beta_2 c} = \frac{L}{c} \left(\sqrt{1 + \frac{m_1^2 c^2}{p^2}} - \sqrt{1 + \frac{m_2^2 c^2}{p^2}} \right)$$

ultrarelativistic:

$$\Delta t \approx \frac{\left(m_1^2 - m_2^2\right)Lc}{2p^2}$$

 For the constant time resolution need L∝p²! Time of flight difference between particle species for a flight path of 1m:

e.g.: Separate π from K with 4 standard deviations, $\sigma_t = 0.3$ ns ($\Delta t = 4 \sigma_t = 1.2$ ns) \rightarrow L \sim 3 m at p = 1 GeV/c but already L \sim 12 m at p = 2 GeV/c

MULTIPLE IONISATION MEASUREMENTS

- Energy loss of particles (dE/dx) depends on momentum p (Bethe-Bloch formula).
- Multiple ionisation measurements are usually done in gas detectors, e.g. drift chamber, time projection chamber. (Some experiments use also the signals from the silicon sensors)
- The measurement of the ionisation is done at the same time as the measurement of the particle tracks.
- Discrimination is easy at low momentum $(1/\beta^2 \text{ range of Bethe-Bloch formula}).$
- At high momentum (relativistic rise) the difference is only a few %
 - 5% at 100 GeV

Total energy loss -dE/dx for different particles measured in the PEP4/9 TPC (Ar-CH₄ = 80:20 @ 8.5 atm):

Difference of the mean energy loss for π and K

(K. Kleinknecht, Detektoren für Teilchenstrahlung)

See also Lecture 3 and 4.1!

ALICE TPC

- dE/dx can be used for identifying particles.
- Left: Time Projection Chamber (ALICE detector, Ne/CO₂ gas). Right: dE/dx measurement in Pb/Pb collisions.
- Note: The spread in dE/dx limits particle Identification.

ČERENKOV COUNTERS

 A charged particle travelling in matter (refraction index of n) with a velocity larger than the velocity of light in this material emits Cherenkov light. Čerenkov light is a weak source: ≈0.1-1% of Ionization.

• Recap from Lecture 3: $\cos \theta_c = (\beta n)^{-1}$, $\theta_{\text{max}} = \cos^{-1} n^{-1}$

$$\frac{\theta_c}{\theta_{max}} = \frac{R_c}{R_{max}} \approx \sqrt{1 - \frac{\gamma_{th}^2}{\gamma^2}}, \quad \gamma_{th} = \frac{n}{\sqrt{n^2 - 1}}$$

Radiation is emitted in narrow rings

High refractive index needed for low threshold

Values with n≈I for discrimination

 Čerenkov counters detect these photons, (focusing mirrors), disregarding the spatial and spectral structure

• The TASSO Čerenkov counter achieves p/π separation by using three materials

principle of a Čerenkov counter:

MATERIALS

Medium	Brechungs-	γ_{th}	p_{th}^p	p_{th}^K	p^π_{th}	p^e_{th}	
cara	index	7272		(GeV/c)		(GeV/c)	
Festkörper / Flüssigkeiten							
Eis	1.310	1.55	1.1	0.58	0.16	$6.0 \cdot 10^{-4}$	
NaF	1.325	1.52	1.1	0.57	0.16	$5.9 \cdot 10^{-4}$	
Quarzglas	1.458	1.37	0.9	0.47	0.13	$4.8 \cdot 10^{-4}$	
Borosilikatglas	1.474	1.36	0.8	0.46	0.13	$4.7 \cdot 10^{-4}$	
Plexiglas	1.492	1.35	0.8	0.45	0.13	$4.6 \cdot 10^{-4}$	
PlastSzint.	1.580	1.29	0.8	0.40	0.11	$4.2\cdot 10^{-4}$	
Bleiglas	1.670	1.25	0.7	0.37	0.10	$3.8 \cdot 10^{-4}$	
Nal	1.775	1.21	0.6	0.34	0.10	$3.5 \cdot 10^{-4}$	
Csl	1.787	1.21	0.6	0.33	0.09	$3.5 \cdot 10^{-4}$	
C ₆ F ₁₄ (180 nm)	1.283	1.60	1.2	0.61	0.17	$6.4 \cdot 10^{-4}$	
Wasser	1.333	1.51	1.1	0.56	0.16	$5.8 \cdot 10^{-4}$	
Alkohol	1.361	1.47	1.0	0.53	0.15	$5.5 \cdot 10^{-4}$	
Paraffinöl	1.444	0.69	1.39	0.9	0.47	$4.9 \cdot 10^{-4}$	
Aerogel	1.24	1.69	1.3	0.7	0.19	0.7-4.3	
	-1.007	-8.50	-7.9	-4.2	-1.18	\times 10 ⁻³	

- Aerogel is a very light nano-porous material from SiO₂
 and water with a density dependent refractive index.
 - It can be manufactured in densities such that n closes the gap between gases and liquids.

				-			
Medium	Brechungs-	γ_{th}	p^p_{th}	p_{th}^{K}	p_{th}^{π}	p^e_{th}	
	index		(GeV/c)	(GeV/c)	(GeV/c)	(GeV/c)	
Gase (1 bar, 0°C, C ₅ F ₁₂ bei 40°C)							
He	1.000035	119.7	112.3	59.1	16.7	0.061	
Ne	1.000066	87.0	81.6	43.0	12.1	0.044	
H_2	1.000132	61.6	57.7	30.4	8.6	0.031	
Ar	1.000282	42.1	39.5	20.8	5.9	0.022	
Luft	1.000292	41.4	38.8	20.4	5.8	0.021	
Luft (STP)	1.000289	42.5	39.8	21.0	5.9	0.022	
CH ₄	1.000444	33.6	31.5	16.6	4.7	0.017	
CO_2	1.000449	33.4	31.3	16.5	4.7	0.017	
CF ₄ (180 nm)	1.00053	30.7	28.8	15.2	4.3	0.016	
Freon 114	1.00140	18.9	17.7	9.3	2.6	0.010	
C ₄ F ₁₀ (180 nm)	1.00150	18.3	17.1	9.0	2.5	0.009	
C ₅ F ₁₂ (180 nm)	1.00172	16.2	15.1	8.0	2.3	0.008	

Aerogels with various densities:

RING IMAGING ČERENKOV DETECTORS

Ring Imaging Cherenkov Counters (RICH) use also the information of the angle of photon emission. Geometry developed for collider experiments.

- Two principles:
 - I. (top) Photons generated in a gas-radiator are reflected by a mirror that focuses the Cherenkov light and a photo detector is placed in the focal plane \rightarrow ring of photons is mapped onto the photo detector. Used for e.g. e/π discrimination

DELPHI (LEP) dual RICH system UV sensitive Drift Chamber (75% CH₄ + 25% C₂H₆ +TMAE) TMAE: photosensitive additive

2. (bottom) a liquid or solid thin radiator produces a ring originating from a single vertex (no focusing mirror needed), e.g. $\pi/K/p$ discrimination

LHCB RICH SYSTEMS

- The LHCb RICH-1/2 systems use 3 radiators:
 - aerogel & C₄F₁₀ gas in RICH-I optimized for low energetic particles (closer to the interaction vertex)
- CF₄ in RICH-2
- Photodetector: Hybrid PMT

TRANSITION RADIATION

- A charged particle traversing the boundary of materials with different refraction index n₁≠n₂ emits transition radiation.
- The total emitted energy E_{tot} is proportional to γ
 - only fast electrons and positrons (γ >1000) emit transition radiation
 - used for the identification of electrons and positrons when their momentum is known
- The numbers of photons emitted per transition is very small many transitions (boundaries) are needed
- The angle of emission is small $\theta_{mpv} \sim \gamma^{-1}$,
 - photons from the transition radiation are very close to the particle track

frequently used geometry: assembly of foils:

ATLAS TRANSITION RADIATION TRACKER

- straw tubes with xenon-based gas mixture: Xe/CO₂/O₂ 70%/27%/3%
- 4 mm in diameter, equipped with a
 30 μm diameter gold-plated W-Re wire
- Radiator: polypropylene-polyethylene fibres (19 μm) between the straws
- Detector: "Straw tubes" embedded in radiator

Two tracks with high (TR, red) and low (ionization) signal

ATLAS TRANSITION RADIATION TRACKER

- Discrimination power of electrons against π in the ATLAS TRT
- Plot shows wrong π assignment at 90% electron efficiency

The ATLAS Collaboration, 2008, JINST 3 S08003

... simulated performance.

