

Status of task 17.3 and publications on Shocks and Vibrations

Aries WP17 progress meeting

Lorenzo Peroni (POLITO)

Task 3 description

Task 3: Dynamic testing and online monitoring

Testing of material samples in a broad range of environments:

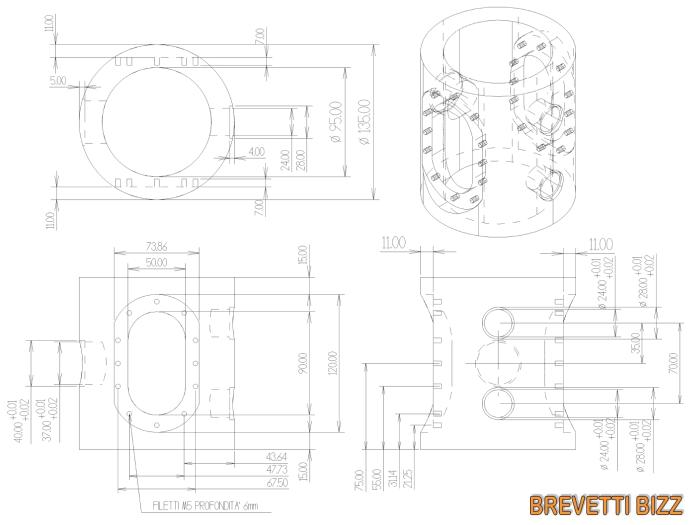
- Mechanical testing in quasi-static and dynamic conditions, at various temperatures
- Tests under very high power laser and particle beams
- Irradiation tests with online monitoring of properties evolution
- Hydrodynamic simulations of experiments constitutive models, spall strengths for new materials

Participants: CERN, ELI-NP, GSI, POLIMI, POLITO

Task 3 description

Task 3: Polito testing

Mechanical testing in quasi-static and dynamic conditions, at various


temperatures

Task 3 description

Milestones

Milestone number ¹⁸	Milestone title	WP number ⁹	Lead beneficiary	Due Date (in months) ¹⁷	Means of verification
MS58	Organisation of PowerMat kick-off meeting (Task 17.1)	WP17	1 - CERN	6	Agenda, summary report
MS59	Irradiation campaigns at GSI for radiation hardness studies (Task 17.3)	WP17	23 - POLITO	27	Report to StCom
MS60	Irradiation effects analysis (Task 17.3)	WP17	1 - CERN	36	Report to StCom
MS61	Comparative compendium of materials developed (Task 17.2)	WP17	1 - CERN	40	Report to StCom
MS62	Dissemination of R&D results on novel materials for accelerator and societal applications (Task 17.5)	WP17	12 - GSI	46	Report to StCom

Deliverables

Deliverable Number ¹⁴	Deliverable Title	Lead beneficiary	Type ¹⁵	Dissemination level ¹⁶	Due Date (in months) ¹⁷
D17.1	Material characterization	1 - CERN	Report	Public	12
D17.2	Irradiation effect simulations	1 - CERN	Report	Public	44
D17.3	Irradiation test results	23 - POLITO	Report	Public	46

Special Issue

╻ ┃┃ Journal metrics

Acceptance rate	36%
Submission to final decision	92 days
Acceptance to publication	38 days
CiteScore	2.400
Impact Factor	1.298

APC	\$2200

Publishing date

01 Jan 2021

Status

Open

Submission deadline

11 Sep 2020

Lead Editor

Martina Scapin¹

Guest Editors

Marilena Tomut² | Alessandro Bertarelli³ | L. Peroni¹ | Nicholas J. Sammut⁴

¹Politecnico di Torino, Turin, Italy

²GSI, Darmstadt, Germany

³CERN, Geneva, Switzerland

⁴L-Università ta' Malta, Valletta, Malta

Shock and Vibration

Special Issue on

Structural and Wave Propagation Effects in High-Energy Particle Impacts

CALL FOR PAPERS

When subatomic particles or ions interact with matter, they tend to transfer part. of their energy to the medium they traverse. The energy deposited in the material produces a dynamic response of the structure, entailing stress waves and or even the failure of the component, with effects comparable to action of dynamic mechanical and thermal loads. These pheno may severel affect the integrity and functionality of the impact The correct understanding and prediction of beam-induced a therefore extremely important in the design of any comp at exposed to dire theraction with intense and energetic particle beams. Howe for many other civil and aerospo optications in v to similar scenarios, such as meical and highthermally induced vibrations, Mor er, impacts wit revestigate mate behavior in ext s that cannot sentory-control fear Research (CERN) could potentially are theoretical and numerical ity of components, with potential erticle accelerator field.

This total issue aims to publish original research in the field of high-energy particles on the party of from a shock and vibration perspective. Papers concerning the asset of induced shockseaves and their structural effects on mechanical components will be considered. Contributions that discuss the development and dation of experiments, alongisde analytical and numerical tools for the analysis of wave propagation and dynamic loading scenarios, are particularly switceme. This special issue also encourages researchers to subsit review articles that overview the state of the art and seek to stimulate and support continuing efforts in studying the macroscale mechanical and hydrodynamic responses induced on materials and in evaluating structural integrity.

Potential topics include but are not limited to the following:

- Mechanics and behaviors of materials in high-energy impacts from a shock and vibration perspective
- Analysis of elastoplastic shock wave generation and propagation in matter
- Modeling and simulation of structural effects during particle beam interaction with matter
- Development and validation of novel material models and/or equations of state for high-energy impact applications from a shock and vibration perspective
- Development of innovative experimental techniques for testing and characterizing materials and structures under extreme shock conditions
- Data acquisition and signal processing in high-energy impact and sbock experiments

Authors can submit their manuscripts through the Manuscript Tracking System at https://mts.hindawi.com/submit/journals/w/dpipi/.

Papers are published upon acceptance, regardless of the Special Issue publication date.

Lead Guest Editor

Martina Scapin, Politecnico di Torino, Turin, Italy

martina.xcapin@polito.it

saur Editor

rilena Tomat, GSI, Darmetadt, many

tomutirgsi.de

Alexandro Bertanelli, CERN, Geneva, Switzerland

alessandro.bertarelli@cerx.ch

L. Peroni, Politecnico di Torino, Turin, Italy Iorenzo peroni@polita.it

Nicholas J. Sammut, L.-Università ta' Malta, Valletta, Malta

nicholas sammut@um.edu.ml Submission Deadline Friday, II September 2020

Publication Date January 2021