No. WED-OR3-201-02 Jinxing Zheng jxzheng@ipp.ac.cn

Engineering Design and R&D Work for Toroidal Field Superconducting Magnet of CFETR

Jinxing Zheng, Xufeng Liu, Yuntao Song, Kun Lu, Guang Shen, Xiaowu Yu, Lei Zhu, Shuangsong Du, Wei Wen, Ming Li, Weiwei Xu, Wuquan Zhang, Xiongyi Huang

Institute of Plasma Physics, Chinese Academy of Sciences

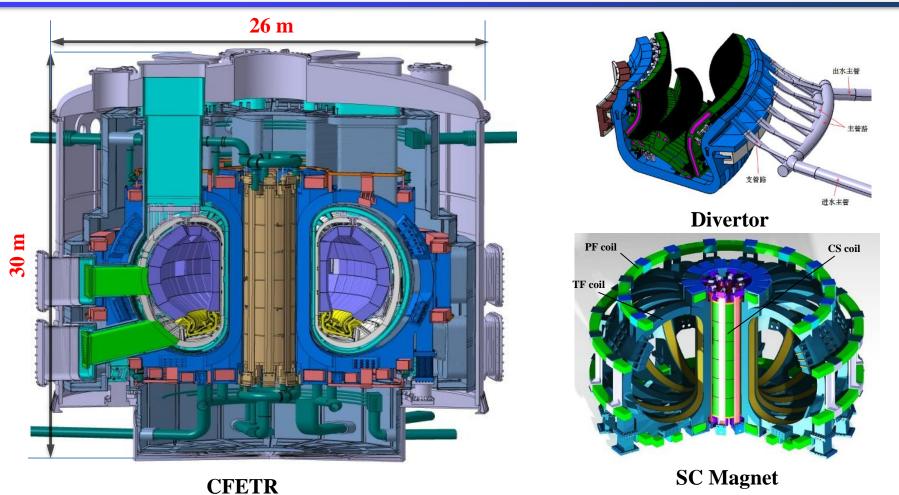
2021-11-17

TF Prototype coil engineering design

2

R&D of TF prototype magnet

4 Conclusion


China MCF Roadmap

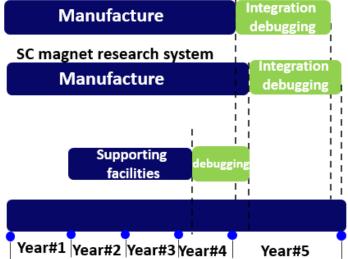
Overview of CFETR

- ✓ Plasma Ip=11-15MA, R=7.2 m, B_t=6.5T;
- ✓ Safe and stable, realize long-pulse steady-state operation;
- ✓ Advanced divertor plasma balance type: Snowflake, Super-X and ITER-like.

CRAFT project

Develop precision manufacturing and testing technology for large magnets

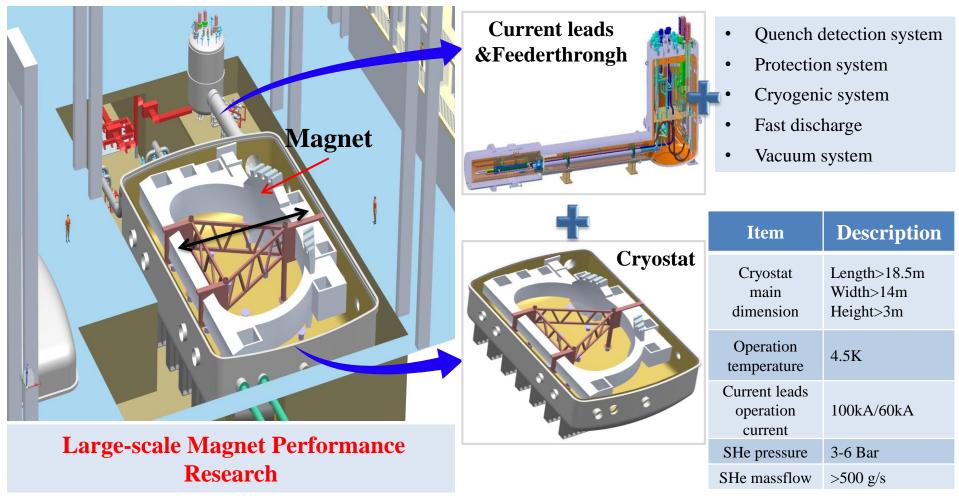
□ Superconducting magnet research system:


- > Magnet test size: D_{max} >13m;
- Magnet energy storage : >2.5GJ;
- > Magnetic field: $B_{max} = 16.5$ T;
- > Test area size: $100 \times 160 \times 550$ mm;
- > Test current: : $I_{max} = 90$ kA,
- > Magnetic field change rate: >5 T/s.

Diverter research system:

- > Maximum particle flow: > $1 \times 10^{24}/m^2s$;
- > Total heating power: 8MW;
- > Steady-state heat flow: 20 MW/m²;
- > Plasma existence time: 100-1000s.

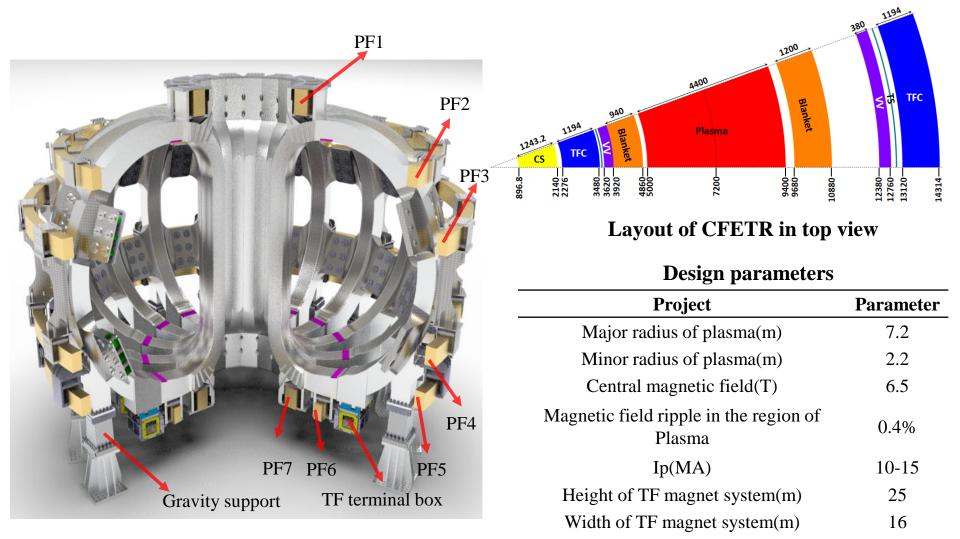
Diverter research system



project durations: 5 years and 8 months

CRAFT project

- Experimental research of large-scale superconducting magnet (mechanics, thermohydraulic, electromagnetics)
- > Evaluation of the magnet performances (safety, stability, reliability)

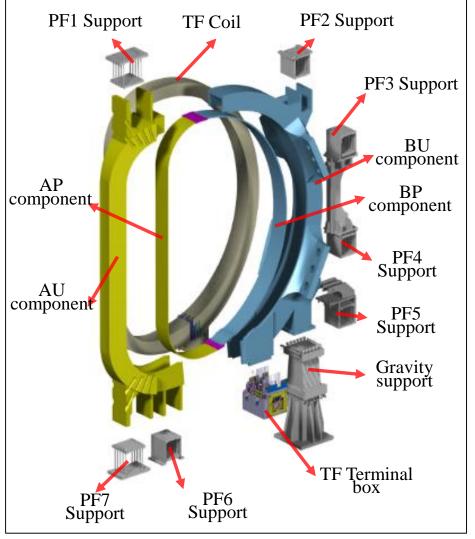


R&D of TF prototype magnet

Overview of CFETR Magnet system

Height of gravity support (m)

Botton support height (m)


CFETR superconducting magnet system

2.5

3.3

Toroidal Field Magnet—Main parameter

Main parameter of TF magnet

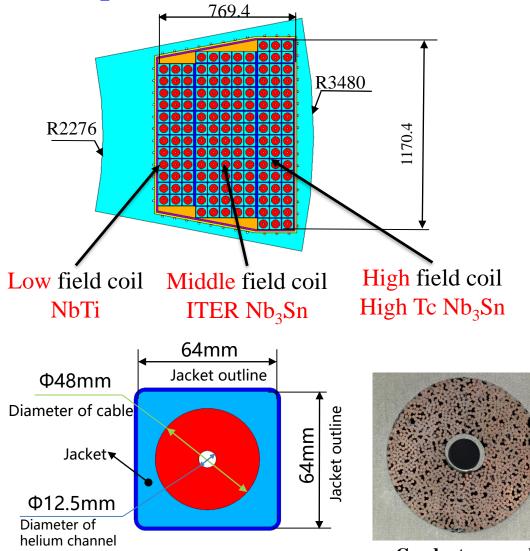
Project	Parameter
Number of TF Magnet	16
Turns of single TF coil	154
Storage energy of 16 TF coil (GJ)	122.2
Operating current (kA)	95.6
Maximum magnetic field (T)	14.5
Length of superconductor (m)	1692/3157/2069
Centripetal force (MN)	1157
Overturning Moment (MN·m))	785
Average length of sub coil in low field region (m)	47
Average length of sub coil in medium field region (m)	45.1
Average length of sub coil in high field region (m)	43.1

Exploded view of TF Magnet

TF magnet structure design—Conductor

Z (mm)

1024



R (mm)

9261

Outer arc segment

Conductor sample

Current: 95.6kA

10164

8389

[•]R3074

R6724

R3074

Inner straight segment

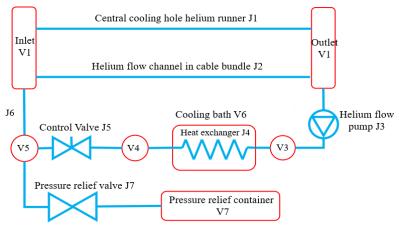
- Low field: 204mm×827mm, 36 turns
- Middle field: 341mm×963mm, 70 turns

Feeder region

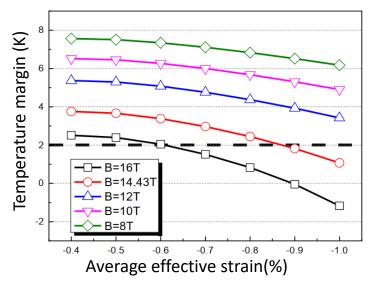
R9189

R9657

R6558


High field: 204mm×1100mm, 48 turns

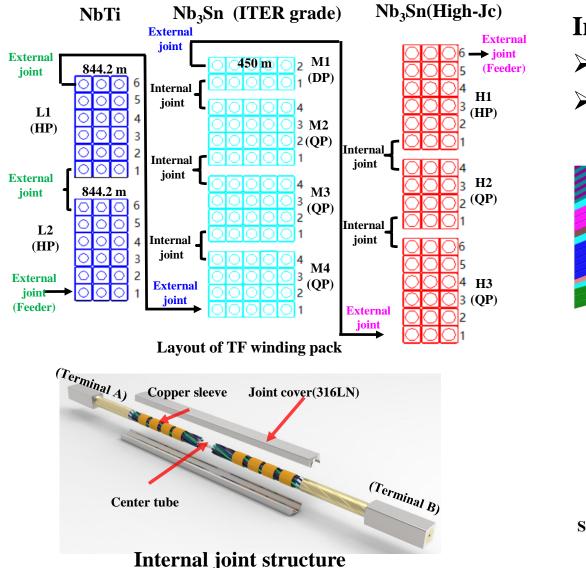
Cross-section size of superconductor



Stability analysis of TF conductor

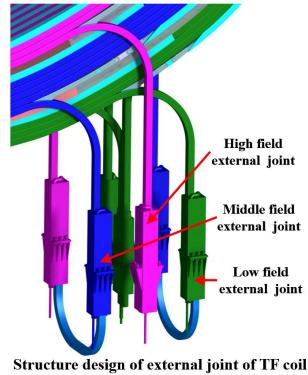
- Minimum temperature margin is 2.96 K (a) 14.43 T and ϵ =-0.5%~0.7% (ITER Criterion > 2K)
- energy margin dropped by 40.39 mJ/cc from ϵ =-0.5% to ϵ =-0.7% @14.43T

Schematic diagram of cryogenic system loop



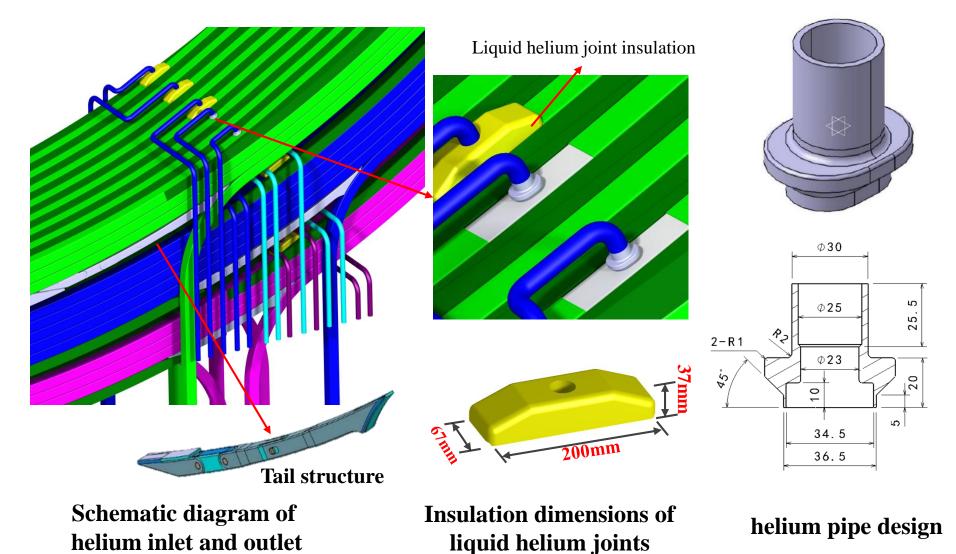
Cond	64×64			
Num	900			
Num	ber of Nb ₃ Sn strand	899		
Dian	ater of cooper/Nb3Sn strand	0.9		
Void	fraction(%)	33.2		
Peak	magnetic field(T)	14.43		
Oper	ating current(kA)	95.6		
Initia	l temperature(K)	4.5		
Cool	ant mass flow rate(g/s)	12.0		
Energy margin (mJ/cc) 600 600 600 600 600 600 600 60		B=14.431 B=12T B=10T B=8T 7		
Average effective strain(%)				

TF magnet structure design—Winding

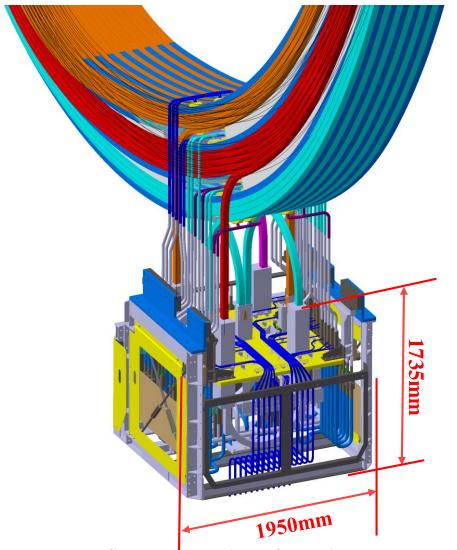


□ Internal joint design of TF coil

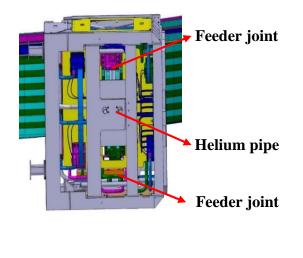
Internal joints of The TF coil :

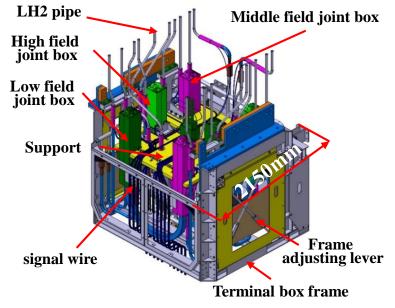

- > Middle field region: 3
- High field region: 2

TF magnet structure design—Winding

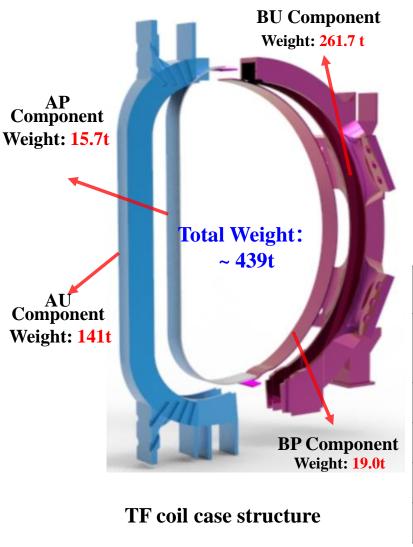


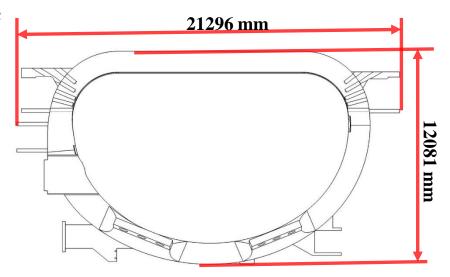
Structural design of TF magnet LH2 joint





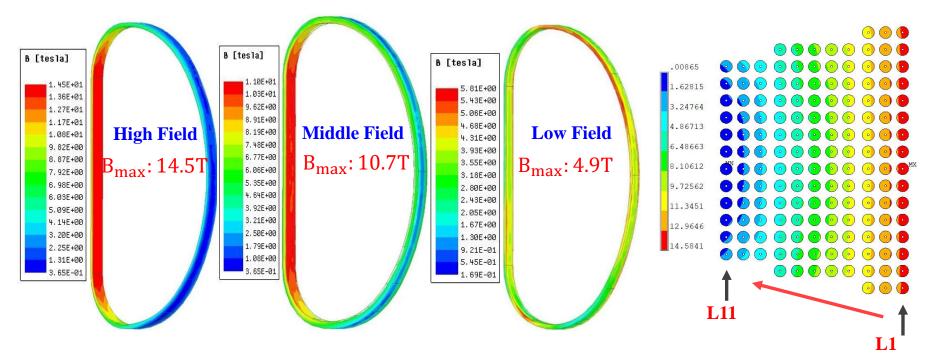
Structure Design of TF Coil Terminal Box





TF magnet structure design—Coil Case

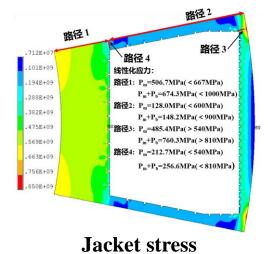
Structure design of TF coil case

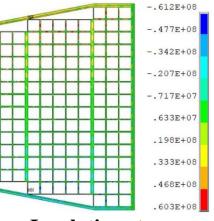


TF coil case outline size

	TF material							
	Component	Material	Yield strength (MPa)	Tensile Strength (MPa)				
	AU	316LN-Mn	>1000	>1500				
nt	AP	316LN	>900	/				
	BU	316L	750	1000				
	BP	/	>500	/				

Electromagnetic analysis

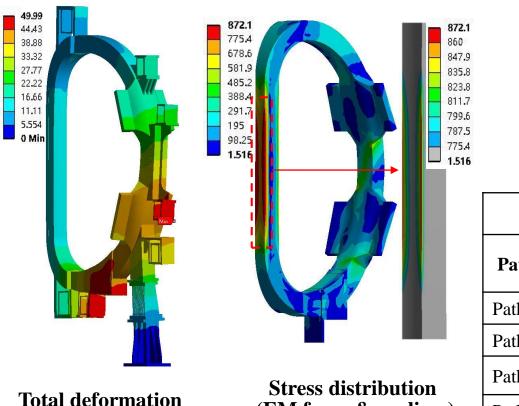

	High Field				Middle Field			Low Field			
	Nb ₃ Sn(ITER grade)			Nb ₃ Sn(High-Jc)					NbTi		
Layer	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11
$B_{max}(T)$	14.5	13.2	11.8	10.7	9.8	8.8	7.6	6.3	4.9	3.9	2.8
Turns	16	16	16	14	14	14	14	14	12	12	12


Stress of Coil Case/Jacket/Insulation

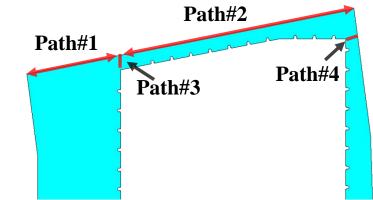
Path/Jacket(Mpa)	P _m	ITER P _m	Allowable P _m	P _m +P _b	ITER P _m +P _b	Allowable P _m +P _b
Path 1	506.7	515	667	674.3	661	1000
Path 3	485.4	468	540	760.3	663	810
Jacket	469.8	585	667	826.6	645	1000

Insulation shear stress (MPa)	Model stress	ITER Stress	Allowable stress
Packing layer	39.8	/	41.6
Ground insulation	41.2	28.6	68.6
Insulation between turns/cakes/double cakes/layers	61.2	40	68.6

The coil case, jacket, and insulation stress meet the allowable stress requirements


Insulation stress

TF magnet structure analysis—3D analysis



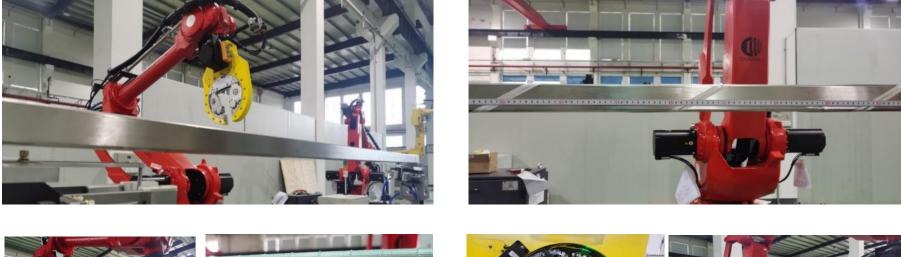
Structural analysis (Cooling & electromagnetic force coupling)

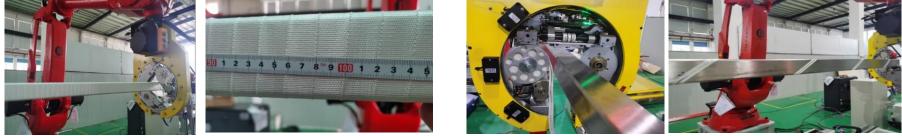
- The maximum deformation is 50 mm, the maximum stress is 872.1 MPa
- Referring to the ITER design criteria, TF magnet stress meets allowable stress requirements

(EM force & cooling)

3D stress analysis results (MPa)							
Path	P _m	$\begin{array}{c} \textbf{Allowable} \\ P_m \end{array}$	P _m +P _b	Allowable $P_m + P_b$			
Path 1	605.2	667	870.7	1000			
Path 2	387.4	600	634.0	900			
Path 3	492.9	540	521.4	810			
Path 4	211.5	540	232.1	810			

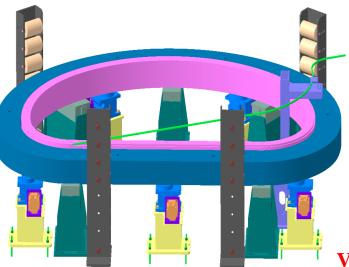
TF Prototype coil engineering design





TF magnet inter-turn insulation wrapping test

- Utilize 65×65mm stainless steel tube and robot wrapping machine to simulate glass ribbon half-stacking and quench detection belt automatic wrapping
- > Realizing uniform wrapping pitch, which provides a test basis for the next step



The glass ribbon and quench detection tape are evenly wrapped!

TF magnet sub-coil assembly test

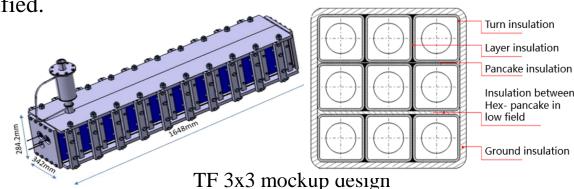
- Test platform was built: manufacture 1/4 ratio of medium & high field coil to carry out research on the process of magnet assembly;
- Process flow of TF coil assembly was built: the whole process test of the sub-coil assembly has been completed

Verify the feasibility of sub-coil assembly and coil hoisting fixture design

Assembly system design

TF Insulation material certification

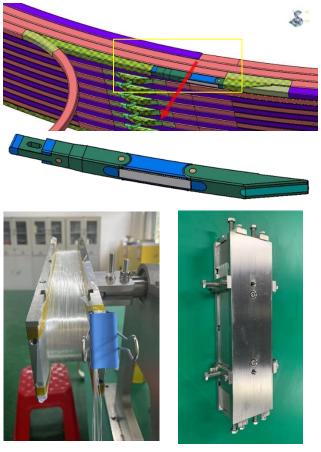
- **Turn insulation:** Polyimide tape "Kapton HN" and Fiberglass tape are used and all test results meet the design requirements
- **TF VPI process**: 3×3 mockup short sample. electrical performance of the turn insulation and the ground insulation are verified.



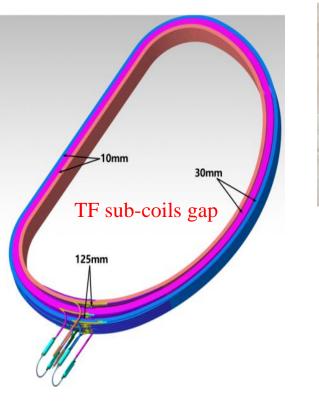
UTS (90/0 degree)_ASTM D 638

ILSS (90/0 degree) _ASTM D2344

ITEM	ITER TF	CRAFT TF
	(MPa)	(Mpa)
UTS - 0°	750	750 (1060) *
UTS- 90°	350	350 (366) *
ILSS-0°	80	80 (108) *
ILSS- 90°	65	65 (80) *



TF 3x3 mockup fabrication



TF Insulation material certification

- **TF Tail Strap:** Designed and prepared by VPI process, verify the cryogenic mechanical performance.
- **TF sub-coils gap filling materials qualification:** 10mm-125mm gap, use inorganic powder to fill the gap

TF Tail Strap

Resin/inorganic micropowder composite material samples

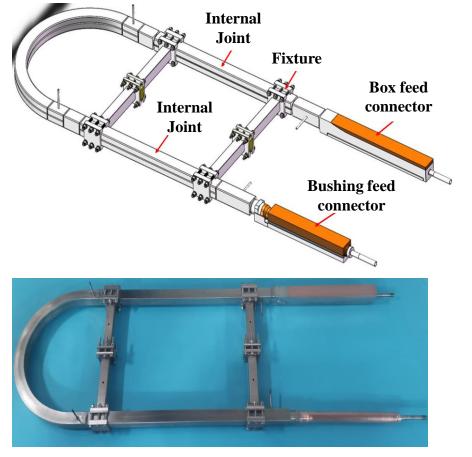
TF magnet internal joint

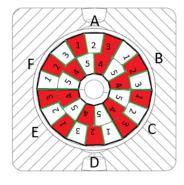
- manufacture cable joint;
- > superconducting sub-cable end welding and joint braiding process is verified

Superconducting cable inspection

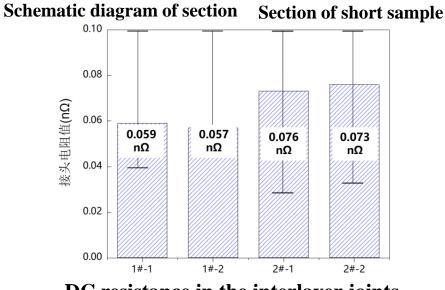
Sub-cable end welding

Center solenoid removal


Central cooling pipe installation


Sub-cable braiding

TF magnet internal joint


- **Completed the production of the test sample** of the internal joint of the TF conductor
- Completed heat treatment and low temperature electrical performance test.

Zero field test sample of internal joint of TF

DC resistance in the interlayer joints

TF Prototype coil engineering design

2

R&D of TF prototype magnet

Conclusion

- □ CFETR TF adopts a hybrid magnet design (NbTi + Nb₃Sn(ITER grade) + Nb₃Sn(High-Jc)). $B_{max} = 14.5T; I_A = 95.6kA; B_{Center} = 6.5T@7.2m;$
- □ The engineering design of the TF magnet system (including windings, joints, coil boxes, etc.) has been completed. $\sigma_{max} = 872.1$ MPa (Under EM force & cooling).
- □ Completed the development of core prototypes such as insulation, sub-coil assembly, internal joints, etc.

Sincerely welcome all experts and teachers for cooperation!

Thank you!

