

27th International Conference on Magnet Technology (MT27) Fukuoka, Japan / 2021

[Invited] 43+T Grenoble Hybrid Magnet: From final Assembly to Commissioning of the Superconducting Outsert

<u>P. Pugnat</u>¹, R. Barbier¹, C. Berriaud², C. Grandclément¹, B. Hervieu², J. Jousset¹, M. Kamke¹, H. Neyrial², F. Molinié², M. Pelloux¹, R. Pfister¹, L. Ronayette¹, Hans J. Schneider-Muntau³, E. Verney¹, E. Yildiz¹

¹ LNCMI, EMFL, CNRS & Univ. Grenoble-Alpes, 38042 Grenoble Cedex 9, France

² IRFU, CEA Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France

³ CS&T, 83500 La Seyne-sur-Mer, France

C01 Superconducting and Hybrid High-Field Magnets ID#382, THU-OR5-301-01 Thursday November 18, 2021 18:30 - 18:45

The Modular Grenoble Hybrid Magnet User Platform

Objectives for the Highest Magnetic Field configuration

- Baseline @ 24 MW*/2022 : 43 T in 34 mm dia.
 SC + poly-Bitter + poly-helices = 8.5 + 9 + 25.5 = 43 T
- Upgrade @ 30/36 MW : 46 T in 34 mm dia. (to validate) SC + poly-Bitter + poly-helices = 9 + 9.5 + 27.5 = 46 T

But also various high magnetic Flux configurations

Field	Warm dia.	Configuration	Electric Power*
43 T	34 mm	14 helices + 2 Bitter + SC	24 + 1 + 0.4 MW
40 T	50 mm	12 helices + 2 Bitter + SC	24 + 1 + 0.4 MW
27 T	170 mm	6 helices + 2 Bitter + SC	18 + 0.75 + 0.4 MW
17.5 T	375 mm	2 Bitter + SC	12 + 0.5 + 0.4 MW
9.5 T	812 mm	SC	0.4 MW**

- * Magnet powering + water cooling pumps + cryogenics
- ** He liquefier + 1.8 K pumps + cryoplant ancillaries

*Electricity cost 2020: 95.3 EUR/MWh

P. Pugnat *et al., IEEE Trans. Appl. Supercond.* 28, 4300907 (2018) P. Pugnat *et al., IEEE Trans. Appl. Supercond.* 30, 4300605 (2020)

NCMI

Technical choices : "The French Tech."

Cryogenic satellite during assembly

Mounting of the current leads and instrumentation wires crossing the λ -plate within the cryogenic satellite before the closure of the 4.2 K reservoir.

Cold fingers of the pressurized and saturated superfluid He bath heat exchanger

Top part of the cryogenic satellite with the warm extremities of the current leads, the cryogenic valves and one of the clarinets for the connectors interfacing 944 instrumentation wires for about 200 sensors.

The cryogenic satellite of about 6 m high assembled at SDMS for pressure tests

Installation of the Cryogenic Satellite & Commissioning overview

5 Feb. 2019	Delivery of the cryogenic satellite in 2 parts
30 Sept. 2019	End of the assembly
20 Feb. 2020	End of the 1 st part of the control system
24 Feb. 2020	Begining of the 1 st cooldown
16 March 2020	Stop of the cooling at 25 K and warm-up (French Covid lockdown for 13 weeks)
24 June 2020	Begining of the 2 nd cooldown
28 July 2020	The pumped & pressurized superfluid He baths obtained & stabilized
28 - 31 July 2020	Cryogenic & Electrical tests of the current leads

Precooling step with LHe : Stopped when TT 201 stable at 4.5 K, i.e. with minimum of liquid

Tests of Current leads

Cryogenic Loss Measurements

Focus on the specially developed current leads – Not commercially available / requests on fiability & robustness

Warm part

	Spec.	As built	% Change
Ø CuP*/strand [mm]	0.5	0.5	0 %
Number of strands (N _s)	4250	3392	- 20 %
Cross section [mm ²]	834	666	- 20 %
Length [m]	1	1	0 %
Tortuosity ($N_s R_b/R_s$)	1.12	1.3	16 %
Void fraction	45 %	65 %	44 %
RRR (273 K/4 K)	10	7.4	- 26 %
I _{max} [kA]	8	7.5	- 6 %
Voltage [mV]	75	100	33 %
Flow He [ℓ/h]	12	15	25 %

*235 g/ton

 \blacktriangleright Departure from optimized design \Rightarrow consumption + 30% with respect 1 W/kA

Cold part : Coil overlengths of Nb-Ti/Cu Rutherford cable of 19 strands $\phi1.6$ mm, 6264 filaments/strands $\phi14$ μm

inside

Optimized

compacted braid for GHe flow

within insulated

AISI 304 L tube

Cryogenic system for pressurized superfluid He fully commissioned together with current leads powered at ultimate current in July 2020

More information p. 90-93 @ http://lncmi.cnrs.fr/wp-content/uploads/2021/02/LNCMI_AR2020vwBD.pdf

Cryogenics is operational for the magnet cooldown and its powering planned first half of 2022

Status of the Construction & Assembly of the Grenoble Hybrid magnet

All equipment built, Final Assembly & Integration are close to completion

Not shown (located in other areas)

- Liquefier cycle compressor @ 14.5 bars
- He recovery balloon : 30 m³ @ Patm
- He recovery compressor @ 200 bars
- 32 x 0.5 m³ high pressure gaseous He tanks @ 200 bars
- Magnet Safety and Magnet Control Systems

Successful insertion of the superconducting coil* (May 5, 2021)

R. Pfister, E. Verney, M. Kamke & M. Pelloux

Welding of the LHe Vessel & Tests

Cf. p.9 https://emfl.eu/emflwebsite/wp-content/uploads/2021/11/emfl_newsletter_n3_21_web.pdf

► No damage of the superconducting coil inside was detected

Penetrant testing of weldings was Ok
 Instrumentation & electrical insulation checks are OK
 Pressure test was OK

R. Pfister, E. Verney, M. Kamke & L. Ronayette

Summary & Next Steps

- The cryogenic satellite for cooling the superconducting outsert has been successfully commissioned
 - Stable pressurized superfluid He bath (1.8 K, 1200 hPa) maintained during \sim 72 h
 - More than 40 W cooling power measured @ 1.8 K / expected heat load in the range 16-20 W
- Current leads (CuP/LTS) also successfully commissioned
 - 3 powering cycles up to the ultimate current of 7500 A (\sim 4 h at the fat top)
 - GHe flow stopped during simulated magnet current discharge (10⁴ MA²s), ΔT_{max} < 80 K
 - Slight dissymmetry between current leads (consumption 10.1 vs. 11.5 Nm³/h, R \approx 11.5 vs. 13.5 $\mu\Omega$)
- The final assembly is close to completion with as the sole remaining part the connections of the cryoline
- Next steps & timeline (tbc)
 - Dec. 2021 End of assembly
 - Jan. 2022 Start of vacuum pumping for cryostat & satellite
 - March/Apr. Start of the cooldown
 - May/June Start of the superconducting magnet powering tests
 - Sept./Oct. Start of the tests in hybrid mode : 1st target at 42-43 T

The hybrid magnet project is supported by Université Grenoble-Alpes, CNRS, French Ministry of Higher Education and Research in the framework of "Investissements pour l'avenir" Equipex LaSUP (Large Superconducting User Platform), European Funds for Regional Development (FEDER) and Rhône-Alpes region.

GrAHal : <u>Gr</u>enoble <u>A</u>xion <u>Hal</u>oscopes for Dark Matter search & Explore the ultra-low energy frontier of cosmic particles (1-100 μeV)

R. Ballou, P. Camus, T. Grenet, S. Kramer, P. Pugnat, J. Quevillon, N. Roch, C. Smith, CNRS-Grenoble & Univ. Grenoble-Alpes

Axion & ALPs Haloscope (Sikivie 1983)

 \Rightarrow RF cavities (0.3-30 GHz) at 20 mK & quantum amplifiers SQUID & JPA (IN) in strong magnetic field (LNCMI)

Ε

N

- Grenoble Hybride Magnet (Equipex LaSUP, LNCMI)
 43 T/34 mm, 40 T/50 mm, 27 T/170 mm, 9.5 T/800 mm
 https://indico.desy.de/indico/event/13889/contribution/11/material/slides/0.pdf
 http://cds.cern.ch/record/2315130/files/fulltext.pdf
 https://grahal.neel.cnrs.fr/
- 2021-2024: 1st experimental runs down to 20 mK in smaller bore existing superconducting magnets (LANEF, IN) in 16-20 T/50 mm & 14 T/70 mm
 *First results https://arxiv.org/pdf/2110.14406.pdf

