

Operation Results of a 23.5-T REBCO Magnet Prototype Towards a Benchtop LHe-Free 1-GHz Microcoil NMR

Dongkeun Park¹⁾, Wooseung Lee¹⁾, Juan Bascuñán¹⁾, Ho Min Kim^{1), 2)}, and Yukikazu Iwasa¹⁾

¹⁾ Francis Bitter Magnet Laboratory/Plasma Science and Fusion Center, Massachusetts Institute of Technology ²⁾ Visiting Scientist from Jeju National University, South Korea

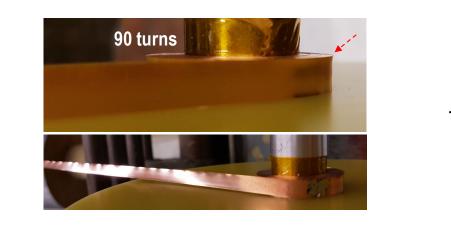
Email: dk_park@mit.edu

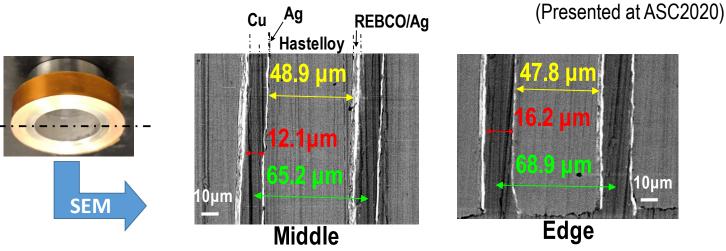
The research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R21GM129688.

Outline

- Introduction to a Benchtop 1-GHz Microcoil NMR Spectroscopy (Micro1G)
- A Small-scale 23.5-T Prototype Magnet Validation
- Issue and Counterproposal *Extreme No-Insulation* Winding
- Manufacture
- Operation Results up to **25 T**
- Towards a 23.5-T/25-mm-RT-bore NMR Magnet for Micro1G

Introduction: Benchtop 1-GHz Microcoil NMR (Micro1G)

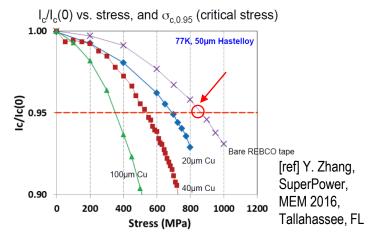

- Technical development goals in our proposed NMR magnet are:
 - \Rightarrow Ultra high field: High NMR Sensitivity and Resolution $\propto B_0^3$
 - Liquid helium free: reliable and safe operation, and cost reduction
 - Compact design & small fringe field: placeable on a workbench or small laboratory space
 - \Rightarrow Cost-efficient design: less cost than conventional φ 54-mm bore NMR magnets

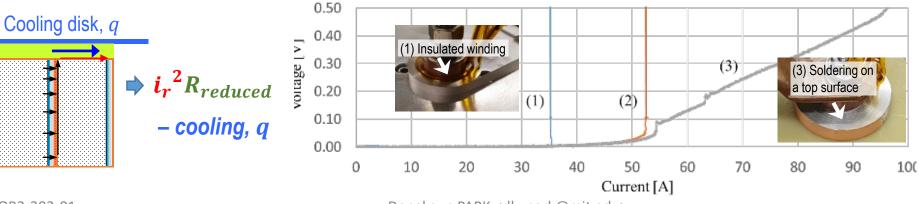

A Shielded Benchtop LHe-Free All-REBCO 1-GHz Microcoil NMR Magnet (Micro1G)

•	23.5-T NMR magnet with φ25-mm RT bore	Region of Interest (ROI)	≤5 mm-DSV
		Homogeneity in ROI	<0.1 ppm
•	Merits: high performance, low-cost, and small installation siting	5 Gauss Fringe Field	≤1.5 m

A Small-Scale 23.5-T Prototype Magnet Validation

- A small-scale <u>23.5-T / 12.5-mm</u> prototype magnet has been developed to validate:
 - ✓ Coil design parameters and conductor performance at ≥10 K operation
 - ✓ Screening-current effect and its reduction method
 - ✓ No-insulation characteristics: charging delay & quench behavior
 - ✓ Conduction-cooling characteristics
- Winding issue found with a *non-uniform* copper-plating thickness of the REBCO tape

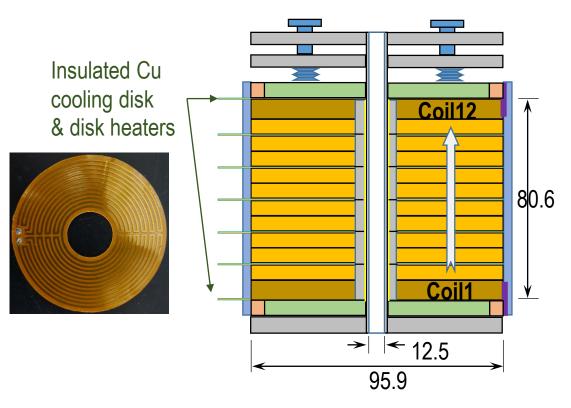



Extreme No-Insulation Winding

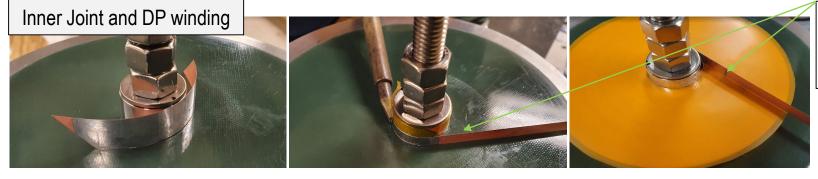
- Reduce copper thickness ($\leq 2 \mu m$) to minimize uncertain tolerance
- Add extra-shunting layers on top of winding surfaces of pancake coils

A Novel Extremely-Thin Copper-Stabilized and Extra-Shunted No-Insulation Winding

(Mechanical) More strength (higher modulus) due to less copper (relatively soft)
 (Electrical) Higher current density → compact, cost effective Lower (or adjust) turn-to-turn resistance → self-protection
 (Thermal) Better contact with a conduction-cooling disk via soldered surface
 (Process) Less time and cost for copper electroplating → low cost

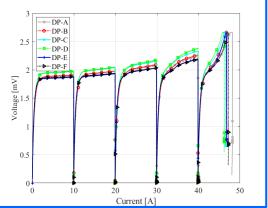


Manufacture and Test Setup

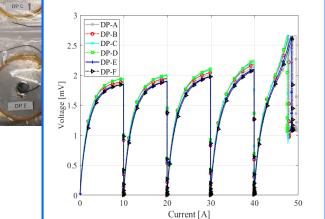

- Stack of single pancake coils with resistive joints (6 inner + 5 outer + 2 lead)
- Copper cooling disks between double pancake (DP) coils
- New charging operation concept: $T_{charging}$ control by disk heaters

Reduce Screening Current

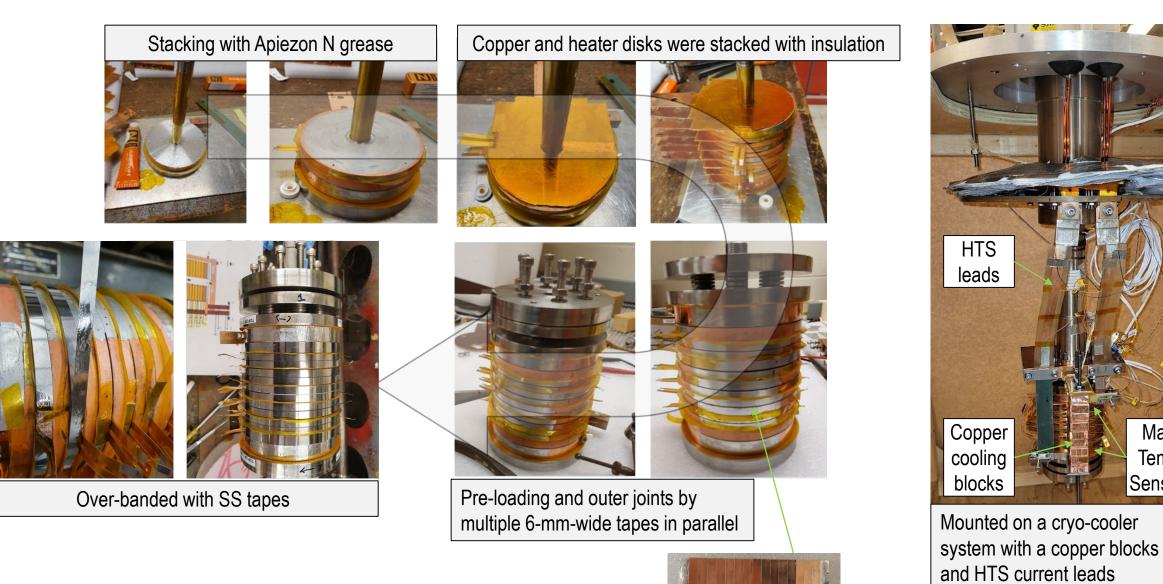
Parameters	C2 – C11	C1 (B) & C12 (T)		
Conductor-W [mm]	6 mm	8 mm		
Conductor-T [mm]	0.053 – 0.056 mm			
ID (2a ₁) [mm] 22.23		.23		
OD (2 <i>a</i> ₂) [mm]	94.63 – 97.50 mm			
# of Pancakes	10	2 × 1		
Turns per Pancake	650 – 688			
Length per Pancake [m]	120 – 127			
Total Length [km]	1.5			
Inductance	1.41 H			
I _{op} [A]	220			
Center Field @ I _{op}	- SCF)			


Manufacture – Extreme-NI DP winding

Thin copper sheets were attached to prevent from sharp pressing by boundary edges



Extra shunting by soldering with 52In48Sn and completed DP coils

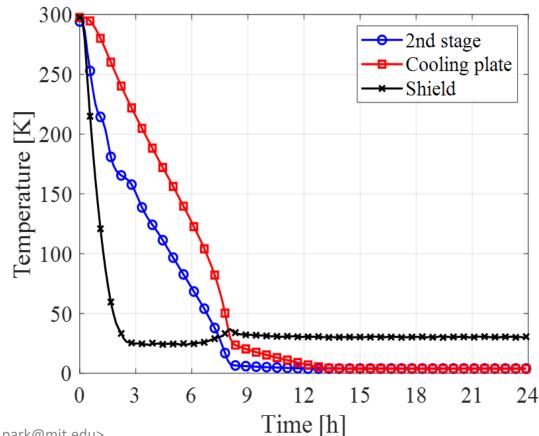


MT-27 WED-OR2-302-01

Dongkeun PARK <dk_park@mit.edu>

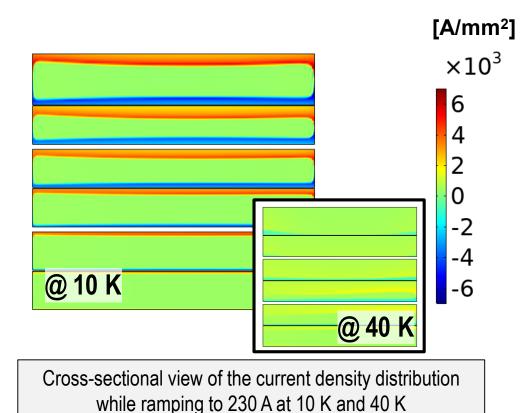
Manufacture – Magnet Assembly and Joint

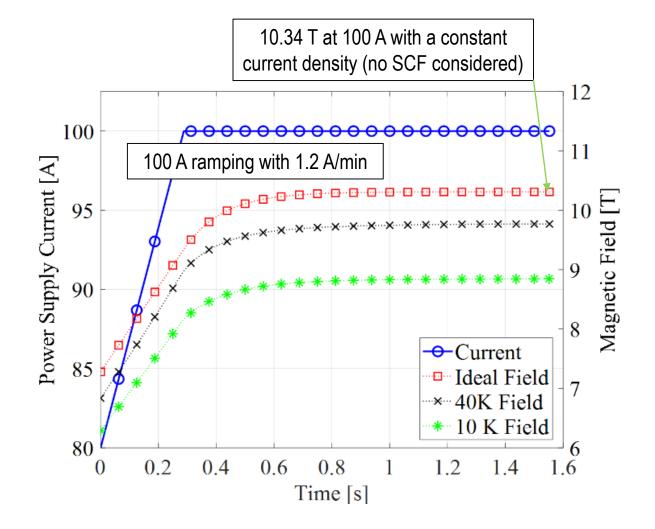
Mag.


Temp.

Sensors

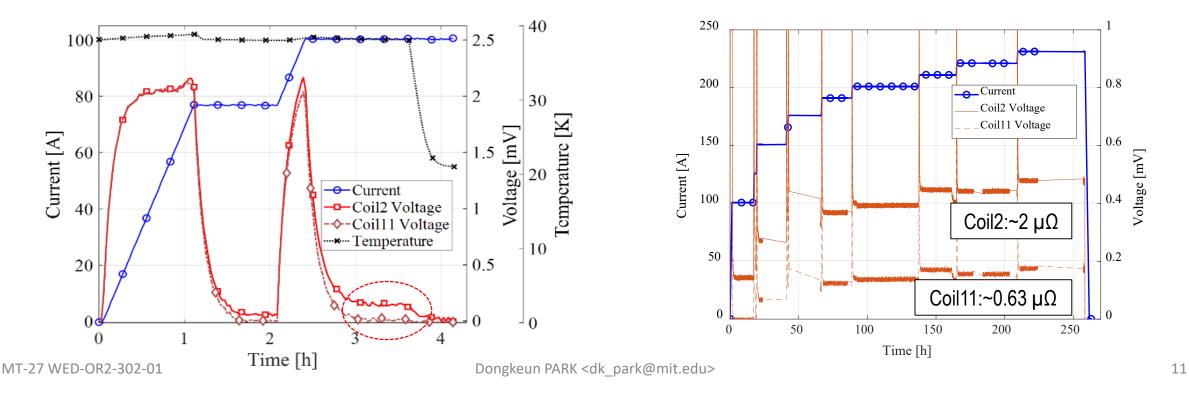
Operation – Cryo-Cooling


- Magnet temperature was successfully down to <4.2 K in 12 hours by a 1W@4.2K GM cryocooler.
- Heater was applied to adjust magnet operating temperature up to 50 K.

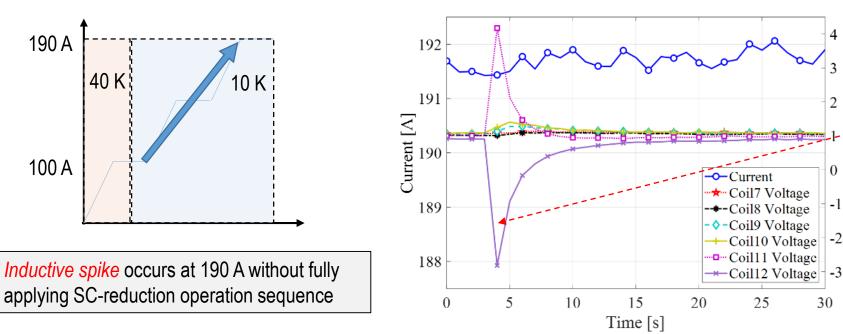


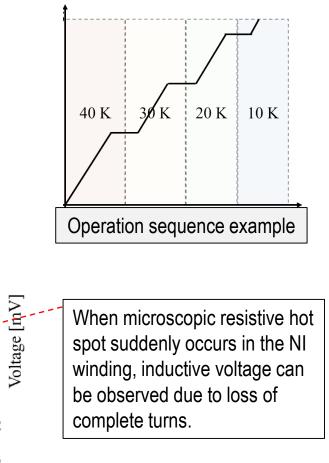
Operation – Screening Current Reduction

- Compare the center field in cases of ramping to 100 A at different temperature.
 - ✓ 8.85 T vs. 9.77 T at 10K and 40K



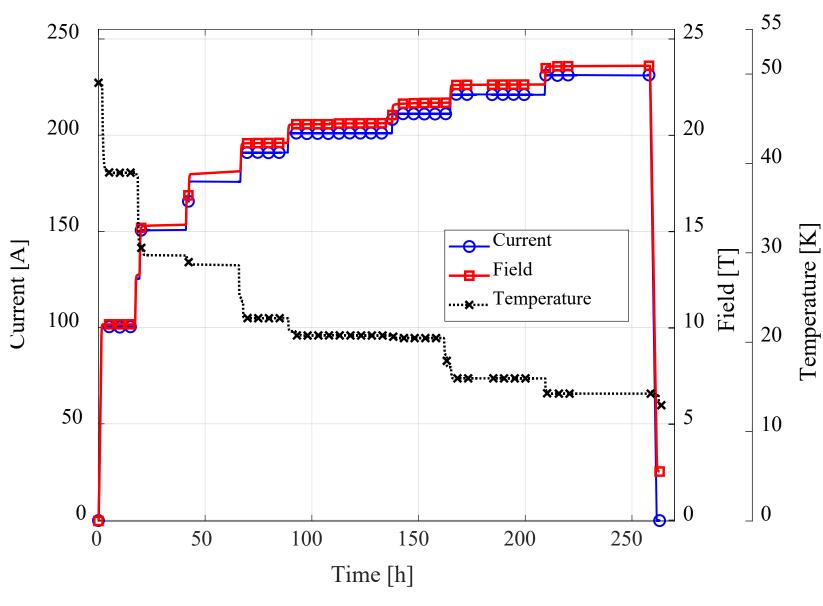
Operation – Stability against Local Resistive Hot Spots


- In Coil 2 and Coil 11, resistive voltages were observed.
- The resistive voltages may come from conductor defects during manufacturing.
- The resistances were *not increased* during ramping and operating up to 25 Tesla.


Excellent thermal stability due to cooling disks (like cryo-stable)

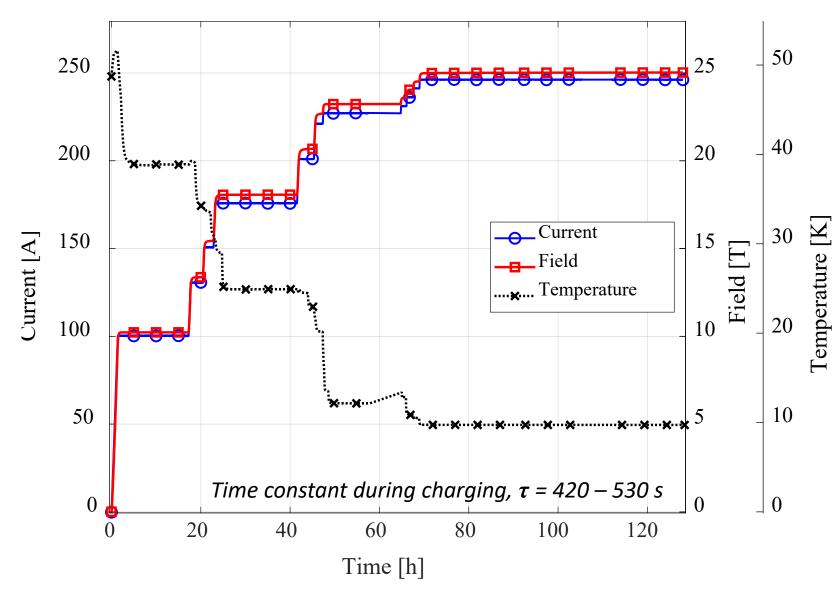
Operation – 1st Charging to 18.3 T

- Operation sequence to apply the screening-current reduction method
 - ✓ Start ramping at higher temperature in lower current region
 - ✓ Reduce the temperature as the current-and-field increase
 - \rightarrow To keep small I_c margin until reaching target field
 - → To mitigate the screening-current induced stresses



25

30


Operation – 2nd Charging to 23.6 T @ 230 A, 14 K

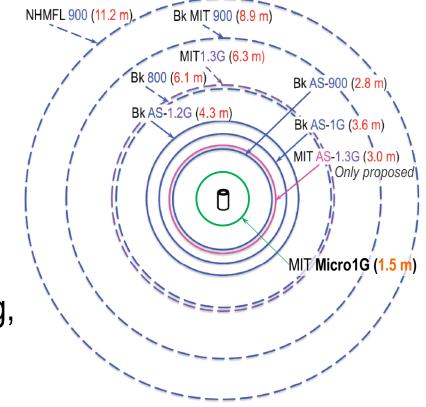
 Successfully reached 23.6 T at 230 A and held for 50 hrs. (Note: with constant current density, 23.5 T @ 220 A)

- Operation sequence (temperature) was not optimized.
- Charging delay time constant: ~500 seconds

Operation – Final Charging to 25 T @ 245 A, 10 K

- Repeated ramping to 23.6 T at 230 A.
- Successfully reached
 25.0 T at 245 A and held for 60 hrs.

Over-heated power cables shut down the power supply suddenly.

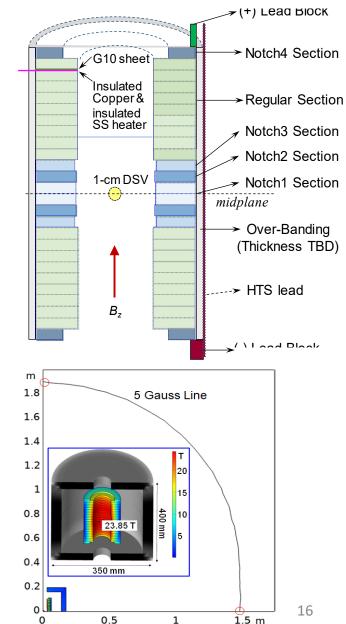

Electrically shorted between pancake coils and copper disks. No physical damage observed.

Towards a Benchtop 1-GHz Microcoil NMR Spectroscopy

- Key design specifications: B0=23.5 T; φ25-mm RT bore; <0.1 ppm over 5-mm-DSV or φ5-mm 10-mm-long cylindrical volume; 5-gauss fringe field radius of ≤1.5 m; cryogen-free operation.
- Shielding method will be determined after further analysis during the next project period.

: Now considering using iron to reduce a 5-g radius \leq 1.5 m, which is less than half of the Bruker's active-shielded 1-GHz magnet (3.6 m).

• Field homogeneity will be achieved by superconducting, ferromagnetic, and RT shims based on our magnet design with high homogeneity .


First-Cut Design for a benchtop 23.5-T NMR Magnet

- Multiple notched single-solenoid coil to achieve high homogeneity.
 Further optimization required considering shield design (and/or) SCF.
- Total <8 km (all 4-mm wide) REBCO tape is required.
- 140-kg iron for 5-g radius reduction and external interference screening.

Parameters		Notch1	Notch2	Notch3	Regular	Notch4	
REBCO tape width / thickness	[mm]	4 / 0.065					
Spacer thickness (average)	[mm]	0.335					
Winding ID (2a1)	[mm]	63.25	62.47	64.55	60	83.79	
Winding OD (2b2)	[mm]	126.3	126.3	126.3	126.3	126.3	
Lower; upper Extent (b1; b2)	[mm]	-8.67; 8.67	-17.34; -8.67 / 8.67; 17.34	-26.01; -17.34 / 17.34; 26.01	-104.04; -26.01 / 26.01; 104.04	-112.71; 104.04 / 104.04; 112.71	
Number of DPs		2	2	2	18	2	
Turns per DP		970	982	950	1020	654	
Conductor length per DP	[m]	289	291	285	299	216	
Total conductor length	[m]	7,540					
Total inductance	[H]	16.8					
Operating current, lop	[A]	179					
Center field* @ lop	[T]	23.5					
Homogeneity* @ 1cm-DSV	[ppm]	0.010 (Vrms); 0.100 (Peak-to-Peak)					

* assuming constant current density in the winding. i.e. no screening current effects are taken into account.

Dongkeun PARK <dk_park@mit.edu>

Conclusion

- A compact cryogen-free 23.5-T all-REBCO magnet was successfully completed.
- Through this program we validated:
 - 1) Conductor Performance, Magnet Design, Operating Parameters
 - 2) Extreme-No-Insulation Winding Technique
 - 3) Conduction Cooling (T_{op} : 10 K 50 K)
 - 4) Screening-Current Reduction
 - 5) Stability Enhancement: Local Hot Spot & Over Current.
- Towards a benchtop microcoil 1-GHz NMR magnet.