TUE-PO1-106-01

Design and optimization of the superconducting quadrupole magnet Q1a in CEPC interaction region

Chuang Shen^{1,2}, Yingshun Zhu^{1,2}, Fusan Chen^{1,2}
¹Institute of High Energy Physics, ²University of Chinese Academy of Sciences

INTRODUCTION

- In November 2018, CEPC Conceptual Design Report (CDR) was announced. To pursue higher collision luminosity, accelerator physicists proposed CEPC high-luminosity program.
- The superconducting quadrupole magnet QD0 in CEPC CDR is divided into two superconducting quadrupole magnets Q1a and Q1b. The superconducting quadrupole magnet Q1a was moved forward to a position 1.9 m from the interaction point.
- The double-aperture superconducting quadrupole magnet Q1a is closest to interaction point, making it the most difficult to design.

PURPOSE

- According to the design requirements of the single-aperture magnet Q1a, we complete the preliminary physical design based on $\cos 2\theta$ coil, racetrack coil and CCT coil.
- Discuss the advantages and disadvantages of the three different coil structures.
- Complete the electromagnetic design of the doubleaperture superconducting quadrupole magnet Q1a.
- Optimize the weight of superconducting magnet with the goal of reducing double-aperture magnetic field crosstalk.

CONTACT

- ☐ This work was supported by the National Natural Science Foundation of China under Contract 11875272
- ☐ E-mail: shenchuang@ihep.ac.cn

METHOD

Cos2θ coil structure

- Two-layer $\cos 2\theta$ quadrupole coil, two blocks in each layer are separated by a wedge.
- Rutherford cable with a trapezoidal angle of 1.9 degrees is twisted by 10 Nb-Ti strands.
- The inner and outer radii of the iron are 29 mm and 52 mm.
- High order field harmonics are within 1×10^{-4} .

Racetrack coil structure

- Two-layer racetrack quadrupole coil.
- Rectangular Rutherford cable with a width of 2.5 mm and a height of 0.85 mm is twisted by 10 Nb-Ti strands.
- The inner edge of iron is a regular octagon, and each edge is 29 mm from the center of aperture.
- High order field harmonics are within 1×10^{-4} .

CCT coil structure

• The inner and outer radii of the iron are 30 mm and 52 mm.

Design and optimization of double-aperture Q1a based on cos20 coil

- ◆The double-aperture magnet Q1a is designed according to the same polarity, magnetic field gradient and field quality requirements in each aperture.
- ◆In the pure coil model, the dipole field at the center of the aperture reaches 1000 Gs. So far, no pure coil model that meets the physical requirements has been found.
- ◆Improve the magnetic saturation strength by changing the iron material reduce the outer radius of iron.

	B (T)	
	151 (1)	
ne		
110	3.118	
ah	2.962	
ch	2.806	
	2.650	
	2.494	
	2.338	
140	2.182	
ıre	2.025	
	1.869	
cal	1.713	
J COLI	1.557	20 30 40 4
	1.401 1.245	
	1.089	
	0.933	
on	0.777	
OII	0.621	
	0.465	
	0.309	
	0.153	

	Main features	Performance	Weight (kg)	Remark
Option 1	2 layers coil, iron-free	Large dipole field, 20% larger current	36	Smallest weight, field crosstalk not solved
Option 2	2 layers coil, DT4 iron	Meet all requirements (Dipole <30Gs)	95.41	Largest weight
Option 3	2 layers coil, FeCoV iron	Meet all requirements (Dipole <30Gs)	74.78	Manufacture cost increases slightly
Option 4	1 layer coil, FeCoV iron	Meet all requirements (Dipole <30Gs)	60.2	Double current carrying capacity, 5 years later

RESULT

- **C**os2θ quadrupole coil is used to design the double-aperture superconducting quadrupole magnet Q1a.
- ■Using FeCoV material, the outer radius of iron is reduced to 40.5 mm. The dipole field at the center of each aperture is 17.316 Gs.
- The filed harmonics at reference radius of each aperture are less than 2×10^{-4} .

Parameter	Value
Current	1965 A
Gradient	141.8102 T/m
Weight	74.78 Kg
Dipole field at the center of each aperture	17.316 Gs
b ₃ (unit 10 ⁻⁴)	-1.04397
b ₄ (unit 10 ⁻⁴)	-0.01436
b ₅ (unit 10 ⁻⁴)	-0.067
b ₆ (unit 10 ⁻⁴)	0.48833

CONCLUSION

- Cos20 quadrupole coil: high excitation efficiency, complex coil shape, complex supporting structure.
- Racetrack quadrupole coil: low excitation efficiency, simple coil shape, friendly to high-temperature superconductors.
- CCT quadrupole coil: simple support structure, low cooling efficiency.
- Complete the double-aperture superconducting quadrupole magnet Q1a, meet the requirements of high-order field harmonics, dipole field and the weight.

REFERENCE

- 1. Gao Jie., CEPC and SppC Status—From the completion of CDR towards TDR.
- 2. P. Ferracin, G. Ambrosio, et al., Magnet Design of the 150 mm Aperture Low-beta Quadrupoles for the High Luminosity LHC.
- 3. S. Farinon, R. Musenich, Biot-Savart Approach to Analytical Computation of Magnetic Fields and Forces of CCT Magnets.