Surface Dielectric Characteristics of GFRP and PTFE in Cryogenic Environment under the Switching Impulse Superimposed on DC Voltage

Ho-Seung Kim, Dong-Hun Oh, Bang-Wook Lee
HVDC Electric Power Laboratory, Hanyang University, Hanyangdeak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea

Background

- Insulation of the DC circuit breaker combined with the superconducting current-limiting module may cause a big problem when DC and SI superimposed due to the generation of a switching impulse waveform.
- When voltage sources of different polarities are superimposed, the fault voltage can be reduced, but when voltages of the same polarity are superimposed, it causes more serious stress in the system.
- Therefore, for the insulation design of the DC circuit breaker combined with the superconducting current-limiting module, it is essential to analyze the surface insulation characteristics according to the superimposing switching impulse waveform during DC operation of solid insulators.

Aim of work

- In order to obtain the surface insulation properties of the solid insulator of the DC circuit breaker combined with the superconducting current-limiting module, GFRP and PTFE were selected as insulation materials.
- For the insulation problem of DC circuit breaker combined with superconducting current-limiting module and compactness of the product, DC+SI superimposing surface dielectric breakdown experiment of GFRP and PTFE was performed.

Experiment Set-up

- In order to measure surface dielectric breakdown of DC and SI superimposed voltages of solid insulators according to the gap distance, the specimens were made of 50x50x15 mm GFRP and PTFE as shown in the fig.1
- As shown in Fig. 2, a jig was manufactured so that the solid insulator could be placed in the jig and adhered to the electrode. For the electrode used in the experiment, the edge of the electrode was rounded with R10 to prevent electric field concentration due to the corona phenomenon at the edge of the electrode, and the rod-shaped electrode was cut at 180 degrees to adhere to the specimen.
- In order to check the surface insulation properties of GFRP and PTFE according to the gap distance, the gap distance was selected as 5, 10, 15, 20 [mm].
- The surface breakdown was configured as shown in Fig. 3, and liquid nitrogen was filled in the cryostat so that the experimental jig could be sufficiently superimposed.
- In order to prevent the formation of bubbles in liquid nitrogen, the experiment was conducted after maintaining a pressure of 3 bar by pressurizing with gaseous nitrogen.

Conclusion

- As a result of comparing the surface dielectric strength of GFRP and PTFE, GFRP is superior to PTFE, but the difference in surface dielectric breakdown voltage decreases as the gap distance increases.
- The surface dielectric strength of GFRP and PTFE is the weakest when voltages of the same polarity are superimposed.
- It will be helpful in estimating the separation distance of solid insulation using the experiment result of superimposed DC+SI surface dielectric breakdown according to the gap distance.