Tensile properties of $(\mathrm{Gd}, \mathrm{Y}, \mathrm{Er}) \mathrm{BaCuO}$ superconducting bulk materials fabricated by infiltration growth technique

Akira Murakami², Miryala Muralidhar², Seiya Chida¹, Kunji Takahashi ${ }^{1}$ and Akifumi Iwamoto ${ }^{3}$

1: National Institute of Technology, Ichinoseki College, Japan;

2: Shibaura Institute of Technology, Japan;
3: National Institute for Fusion Science, Japan

Introduction

REBaCuO, where RE denotes rare-earth elements, superconducting bulk materials are promising for high performance magnets that can trap large magnetic field in compact space. REBaCuO bulk materials fabricated through conventional processing contain pores that cause degradation of mechanical properties. On the other hand, low porosity bulk materials can be fabricated by new processing that is called infiltration growth technique. In this study, mechanical properties of a ($\mathrm{Gd}, \mathrm{Y}, \mathrm{Er}$) BaCuO bulk material fabricated by infiltration growth technique were investigated through tensile tests of specimens cut from the bulk material.

Bulk samples

Schematic illustration of precursor used for Schematic illustration of precursor used for
infiltration growth of $(G d, Y, E r) B a C u O$ bulk material. infiltration growth of ($G d, Y, E r$)BaCuO bulk material.
Stacked precursor that consists of liquid phase source and solid phase preform is used.

Melt-growth in $100 \% \mathrm{O}_{2}$ atmosphere is also effective in eliminating pores.

Bulk samples.

$$
\begin{aligned}
& \text { Schematic illustration of conventional processing of REBaCuO bulk materials. } \\
& \mathrm{REBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{\mathrm{x}}(\mathrm{RE} 123) \text { and } \mathrm{RE}_{2} \mathrm{BaCuO}_{5}(\text { RE211 }) \text { are mixed. }
\end{aligned}
$$

50/75/100\% O_{2} atmosphere

Tensile test procedures

In this study, tensile tests were carried out to evaluate mechanical properties. Specimens were glued to stainless steel rods by using epoxy resin glue.

Schematic illustration of bending tests.
Bending tests are commonly carried out to evaluate mechanical properties of REBaCuO bulk materials. However, the strength data obtained through bending tests are overestimated.
Tensile test results

Weibull plots of tensile strength.

Relationship between tensile strength and porosity of ($G d, Y, E r$).
Tensile strength data of (Gd,Y,Er) are comparable to those of (Gd,Dy) and Dy. Weibull coefficient of (Gd,Y,Er) is slightly smaller than those of (Gd, Dy) and Dy. Tensile strength increases with decrease of porosity.

Conclusion

Tensile strength of specimens cut from a (Gd,Y,Er)BaCuO bulk material increases with decrease of porosity. Reductions of solidified residual liquid phase, segregated RE211 particles and Pt are effective in improving mechanical properties of low porosity REBaCuO bulk materials.

Acknowledgment

This work was supported in part by NIFS Collaboration Research Program (NIFS21KECA086).

