Introduction

Scale generation decreases power generation efficiency in thermal power plants.

- What is scale?
 - Iron oxide generated by corrosion of water supply system pipes
 - Thermal conductivity is about 10% of pipe material
 - Adhesion on pipe wall decreases in power generation efficiency.

Removal of the scale can prevent decreases in power generation efficiency and reduce CO₂ emission.

Water treatment in thermal power plant

- Heat treatment (thermal power plant)
 - AlVolte Treatment
 - HGMS System and practical place to install

Main component of the scale

- Hematite (Paramagnetic) Fe₂O₃
- Magnetoferrous Fe₁₋₂O₄
- Goethite (Paramagnetic) α-FeOOH (γ=1.2-10)

In this study, we targeted Oxygenated Treatment (OT) scale.

Lab-scale magnetic separation of hematite

- Purpose of analysis
 - To investigate change in the hematite capture performance of the filters used in the HGMS system by the temperature.

- Analysis conditions
 - Analysis conditions
 - Filter conditions
 - Filter number: 60
 - Mesh opening: 0.32 µm
 - Wire diameter: 0.3 mm
 - Filter material: Magnetite
 - Magnetic field direction: Right
 - Fluid direction: Right
 - Fluid temperature: 80 ℃

- Calculation method
 - The saturated trapping capacity of hematite per filter was estimated from the inflection point of the particle trajectory calculation.

- Results and Discussion
 - At high temperature, the drag force becomes smaller due to the decrease in viscosity, and the saturated trapping capacity is expected to increase.
 - The capture amount was larger than that of the experimental value, which may be due to the deposition of hematite particles not in a close-packed structure.

HGMS System and practical place to install

- High gradient magnetic separation method (HGMS)
 - When a ferromagnetic filter is installed in the magnetic field, the field gradient is generated around the filter, and ferromagnetic and paramagnetic materials are trapped by the magnetic force.

- Magnetite force (force received from the filter)
 - Magnetic field strength (B) × B
 - Drag force (force received from fluid)
 - Fluid velocity (v) × Fluid velocity (v)

- Particle radius (r)
- Magnetic susceptibility (χ)
- Permeability of vacuum (µ₀)
- Magnetic flux density (B)
- Viscosity coefficient (μ)
- Fluid velocity (v)
- Particle velocity (u)

When magnetic force > drag force, the scale magnetic separation is possible.

Removal with high-gradient magnetic separation (HGMS)

- Operable under high temperature and high pressure
- Low pressure drop due to coarse filters
- Filters can be reused by cleaning

Solidsaid superconducting magnet

Water flow

HGMS diagram

Ferromagnetic filters

Removal with HGMS by soluble paramagnetic particles

- Removal of Iron Oxide Scale from Boiler Feed-water in Thermal Power Plant by Magnetic Separation -
 - Aggregation States of Oxygenated Treatment Scale -

- Purpose of experiment
 - To investigate magnetic separation properties of hematite and compare with analytical results.

- Experimental conditions
 - Experimental equipment of HGMS
 - Filter number: 60
 - Mesh number: 0.32 µm
 - Wire diameter: 0.3 mm
 - Applied magnetic field at the center
 - 11-15 T
 - 70 cm/sec
 - Separation (200 ppm)

- Experimental results
 - The overall separation rate of hematite was 20.9% at 500 ppm and 16.0% at 500 ppm.
 - The average capture amount per filter for the 1st stage separation from the inlet side was 0.12 g at 200 ppm and 0.23 g at 500 ppm.
 - From the experiment at 500 ppm, the calculation of capture particles is reasonable.
 - From the empirical formula, it was estimated that the capture rate of hematite is 40% at 25 ℃ and 98% at 80 ℃, using 150 filters.

- Results and discussion
 - From the particle trajectory calculation and the experiment, the calculation of capture particles is reasonable.
 - It was estimated that about 98% of scale can be captured by 150 filters at 80 ℃.

Summary

- From the particle trajectory calculation and the experiment, the calculation of capture particles is reasonable.

Acknowledgement

This research was partly supported by "Advanced Low Carbon Technology Research and Development Program (ALCA)" of Japan Science and Technology Agency (JST) Grant Number: PMIC1100