AC losses in JT-60SA TF magnet during commissioning: experimental analysis and modeling

A. Louzguiti1, S. Davis2, K. Fukui3, K. Hamada3, C. Hoa4, B. Lacroix5, Q. Le Coz5, F. Michel4, H. Murakami3, S. Nicollet1, G. Sannazzaro2, V. Tomarchio2, A. Torre1, L. Zaní1

1CEA IRFM, Cadarache, France / 2F4E Garching, Germany / 3QST, Naka, Japan / 4CEA IRIG, Grenoble, France / 5Assystem, Pertuis, France
alexandre.louzguiti@cea.fr

THU-PO3-206-01

ABSTRACT

• JT-60SA tokamak Integrated commissioning started in April 2020, superconducting magnets tests from January to March 2021
• Toroidal Field (TF) magnet successfully achieved 25.7 kA nominal current
• TF current tests create AC losses in TF winding pack (WP) and casing
• Losses estimated from enthalpy balances using TF He inlet/outlet sensors
• Theoretical calculation of hysteresis and coupling losses in the WP and eddy currents losses in the casing
• Comparison between experimental and theoretical energy values

AC LOSSES MODELING

• Hysteresis losses computed as in [1] (Traps field map [2], B. Turck analytical formulae [3], def=18 µm [4] and Jc(B,T) measured in [5]).
• Coupling losses computed with \(P = \pi R_B^2 \mu_0 \) (TF discharge time constant > 10 s >> \(\tau \)). We assume \(\pi R_B^2 \mu_0 = 1/(aB + b) \) and \(b = \) deduced from \(\pi \tau (5.65 T) = 279 \) ms (Sultan [5]) and \(\tau = (0.5 T) = 604 \) ms (CEA [6]). To account for field orientation, we use \(P = \pi R_B^2 (aB^2 + \) x)
• Eddy currents losses in TF casing are computed through solving of RL circuits equations with data from [8]

\[
\begin{align*}
R_{c,\text{cass}} + L_{c,\text{cass}} \frac{dI_{c,\text{cass}}}{dt} + M_{c,\text{cass}} \frac{dI_{c,\text{cass}}}{dt} = -M_{c,\text{cass}} \frac{dI_{c,\text{cass}}}{dt} \\
R_{y,y} + L_{y,y} \frac{dI_{y,y}}{dt} + M_{y,y} \frac{dI_{y,y}}{dt} = -M_{y,y} \frac{dI_{y,y}}{dt}
\end{align*}
\]

\[E_c[I] = \int P_{cass} \text{d}t = \int R_{c,\text{cass}} I_{c,\text{cass}}^2 \text{d}t \]

Inner leg (IL) of casing is shorter and thinner than its outer leg (OL) → 43% of total power is generated in IL and 57% in OL → average power per unit volume is 1.55 times higher in IL than in OL.

SYNTHESIS AND COMPARISON EXPERIMENT VS MODELING

• Theoretical transient heat loads computed with AC losses modeling and joints Joule losses estimate from \(R_{\text{TF joints}} \).
About 90% of the load is due to eddy currents losses in TF casings
• Comparison between total experimental and theoretical transient heat load show a fair agreement in the 5-15% range even with a conservative estimate of the joints contribution
• WP absorbs about 50 % of the load while 90 % of it is generated in casing → casing heats WP
• Lorentz forces increase this effect

EXPERIMENTAL DATA ANALYSIS

• Enthalpy balances of Helium flow in TF WP and casing during fast discharge tests allow AC losses determination (transient heat loads)
Simplified scheme of Helium mass-flow, temperature and pressure sensors is shown on the right.

\[
\begin{align*}
\Delta H_{\text{WP}}[\text{W}] &= \dot{m}_{\text{WP}} h(T_{\text{out,WP}}, P_{\text{out,WP}}) - h(T_{\text{in,WP}}, P_{\text{in,WP}}) \\
\Delta H_{\text{Cas}}[\text{W}] &= \dot{m}_{\text{Cas}} h(T_{\text{out,Cas}}, P_{\text{out,Cas}}) - h(T_{\text{in,Cas}}, P_{\text{in,Cas}})
\end{align*}
\]

<table>
<thead>
<tr>
<th>(I_{FD}) [kA]</th>
<th>(\tau_{FD}) [s]</th>
<th>Transient heat loads [kJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP</td>
<td>Cas</td>
<td>WP</td>
</tr>
<tr>
<td>10</td>
<td>14.9</td>
<td>1114</td>
</tr>
<tr>
<td>15</td>
<td>13.0</td>
<td>2471</td>
</tr>
<tr>
<td>18</td>
<td>12.6</td>
<td>3859</td>
</tr>
</tbody>
</table>

Results for different fast discharge (FD) currents \(I_{FD} \).

TF fast discharge time constants \(\tau_{FD} \) are decreasing with increasing \(I_{FD} \) because \(\tau_{FD} = L_{\text{TF}}/R_a \) and the higher \(I_{FD} \) the higher the energy dissipated in the dump resistance \(R_d \), so the higher its effective temperature and resistance.

• Joints Joule losses participate in transient heat loads during TF current tests so their total resistance \(R_{\text{TF joints}} \) needs to be determined
At the end of the plateau at nominal current, from an enthalpy balance we determine \(R_{\text{TF joints}} = 573 \) nΩ. This value is conservative since the stationary regime is not completely reached (see plot above).

CONCLUSION

• AC losses modeling in fair agreement with JT-60SA experimental results
• Major contribution of casing eddy currents and large redistribution to WP
• Consistency of observation with AC losses study in CTF [1]

ACKNOWLEDGEMENTS / REFERENCES

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The authors gratefully acknowledge members of the JT-60SA Integrated Project Team for data exchange and fruitful discussions.