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eTF current tests create AC losses in TF TF fast discharge time constants 7yp are decreasing with increasing Irp

winding pack (WP) and casing because 7rp = Ltr /R4 and the higher Irp the higher the energy dissipatec

in the dump resistance R;, so the higher its effective temperature anc
eLosses estimated from enthalpy balances using TF He inlet/outlet sensors

resistance. =
eTheoretical calculation of hysteresis and coupling losses in the WP and { l T~ l
eddy currents losses in the casing *Joints Joule losses
eComparison between experimental and theoretical energy values participate in transient heat |
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AC LOSSES MODELING

eHysteresis losses computed as in [1] (Traps field map [2], B. Turck
analytical formulae [3], deff=18 um [4] and Jc(B,T) measured in [5].

At the end of the plateau at nominal current, from an enthalpy balance we

Coupling losses computed with P=nTBa2/uO (TF discharge time

constant > 10 s >> nt). We assume nt(B) = cst/pc,(B) = 1/(aB + b); a
and b deduced from nt(5.65 T)=279 ms (Sultan [5]) and nt(0.5 T)=604 ms

(CEA [6]). To account for field orientaton, we use P = nT(Ba)(aBg,x +

determine Rrr joints =573 nQ. This value is conservative since the

stationary regime is not completely reached (see plot above).

SYNTHESIS AND COMPARISON EXPERIMENT VS MODELING
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Inner leg (IL) of casing is shorter and load show a fair agreement in the 5-15% range even with a conservative

estimate of the joints contribution

thinner than its outer leg (OL) Exp transient heat loads [kJ]
oWP absorbs about 50 % of the [anb%&

Inner leg (IL)

-2 43% of total power is generated in IL
and 57% in OL '8

WP Cas

| load while 90 % of it is generated 10 1114 (48.3 %) 1191

-> average power per unit volume is 1.55 r;::}.‘ /S in casing = casing heats WP 15 2471 (50.2 %) 2451
' higher in IL than in OL. Ny < o ' ' |

times higher in IL than in O ‘:_}_J A _.;L/OL — Lorentz forces increase this effect 18 3859 (51.6 %) 3623

EXPERIMENTAL DATA ANALYSIS CONCLUSION

Sunfﬂti;:a; I;e at ¢ AC losses modeling in fair agreement with JT-60SA experimental results
~4.4 K, 5.3 Bar

eEnthalpy balances of Helium flow Tinwe Pinwp

in TF WP and casing during fast e Major contribution of casing eddy currents and large redistribution to WP

TF coils
(WP)

e Consistency of observation with AC losses study in CTF [1]

discharge tests allow AC losses .
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