

Kota Mizushima^a, Ye Yang^a, Tetsuya Fujimoto^b, Yoshiyuki Iwata^a, Shunya Matsuba^a, Yasushi Abe^a, Etsuo Noda^a, Masami Urata^a, Toshiyuki Shirai^a, Tomofumi Orikasa^c, Shigeki Takayama^c, Saki Amano^c, Kosuke Nakanishi^c, and Yutaka Hirata^c

Introduction

Heavy-ion radiation therapy (HIRT) have advantages of a more localized dose delivery and a higher biological effect, compared to conventional X-ray therapy; however, the number of newly-constructed HIRT facilities was only three for the last three years (2018-2020).

 \rightarrow One of the reasons is a huge introduction cost due to the large apparatus and building.

National Institutes for Quantum Science and Technology (QST) has initiated a project to develop a compact and affordable HIRT system named "Quantum" Scalpel".

New generation HIRT system

In this presentation, a concept design of the superconducting magnet applied for the compact HIRT synchrotron is reported.

- Main features of the synchrotron are
- circumference: about 29 m
- four 90-degree sectors; consists of two 45-degree bending equipped with curved dipole and quadrupole coils
- injecting 4 MeV/u ion beam
- accelerating until 430 MeV/u in 5 sec duration
- extracting while gradually decelerating

Specifications of the su	perc
Central field	
Central field gradient	
Ramp rate	
Operation temperature	
Magnetic length	
Curvature radius	
Field quality	
Field gradient quality	

Operation patter of synchrotron

5 sec

	430 MeV/u
Magnetic field	
D	4 MeV/u
Beam pulse	

Electromagnetic Design of the Superconducting Magnet for a Compact Heavy-Ion Synchrotron

^aNational Institutes for Quantum Science and Technology (QST), ^bAccelerator Engineering Corporation, ^cToshiba Energy Systems & Solutions Corporation

- 2D coil designed by Curved coils are with the 1 mm diam	gn – wound on a FRP mand		
Main features of th	e superconducting wire		
Diameter	ϕ 1.1 mm (with insulation)		
Cu:CuNi:NbTi	1.43:1.40:1.00		
Filament diameter	2.4 μm		
Number of filaments	33600		
Twist pitch	10 mm		
Critical current	492 A (5 T, 4.2 K) 399 A (6 T, 4.2 K) 305 A (7 T, 4.2 K)		
חחח	166 (0 T), 82 (2 T), 63 (3 T)		

- 3D design -

Fig. 3D images of the magnetic-flux densities of the (a) iron yoke and (b) coil at the central field and gradient of 3.5 T and 1.5 T/m.

Design of the superconducting magnet

Inner shape of the coil was determined to the ellipse with 144 mm (hori.) and 100 mm (vert.) considering the space for the thermal shield, the thickness of the beam duct and mandrel.

Inner radius of the iron yoke was set to 125 mm (hori.) and 109 mm (vert.) for the field quality in the applied field range.

Coil parameters of the superconducting magnet				
ltem	Dipole	Quadrupole		
Number of turns/pole	1070	36		
Number of layers	22	2		
Nominal current	265 A (3.5 T)	123 A (1.5 T/m)		
Self-inductance	5.51 H 8.39 m			
Stored energy	193 kJ 0.06 kJ			

Calculation in three-dimension is carried out by using OPERA-3D code with the consideration of the nonlinearity of permeability. • Multipole filed components generated due to the curved shape of the magnet were compensated by the wire displacements on each outer

> Maximum field in the superconducting wires is 4.3 T, which corresponds to the operation point of 71% on the load line. ► Relative field errors were evaluated at the reference radius of 30 mm, and it was verified that the field and gradient qualities meet the synchrotron requirements.

Relative field errors at the reference radius						
<i>B</i> ₁	0.30	1.50	2.50	3.50	[T]	
B ₃ / B ₁	-1.07	-1.51	-1.27	3.35	[10-4]	
B ₅ / B ₁	-0.08	-0.04	-0.05	-0.16	[10-4]	
B ₇ / B ₁	-0.01	-0.01	-0.01	-0.01	[10-4]	
B ₉ / B ₁	0.01	0.01	0.02	0.02	[10-4]	
B_2 / $R_{\rm ref}$	0.13	0.64	1.07	1.5	[T/m]	
B ₄ / B ₂	-3.61	-3.02	-1.44	1.68	[10-4]	
B ₆ / B ₂	2.14	1.98	1.97	2.25	[10-4]	
B ₈ / B ₂	-0.04	0.00	0.01	0.02	[10-4]	
B ₁₀ / B ₂	-0.40	-0.40	-0.40	-0.40	[10-4]	

Winding pattern of the dipole coil-ends was optimized to prevent the linear coupling resonance from being excited. ► Integrated sextupole considering the beta function could be reduced to less than 0.1% of the original.

Design study of the superconducting magnet was carried out for the heavy-ion therapy synchrotron. The

Bending magnet with 3.5 T central field and 1.5 T/m field gradient has been designed while achieving the required quality. Although contributions of the persistent, coupling and eddy currents have not been treated in this study, they will be verified in the next design step.

Cross section of the superconducting magnet

TUE-P01-402-04

TOSHIBA

Summary