

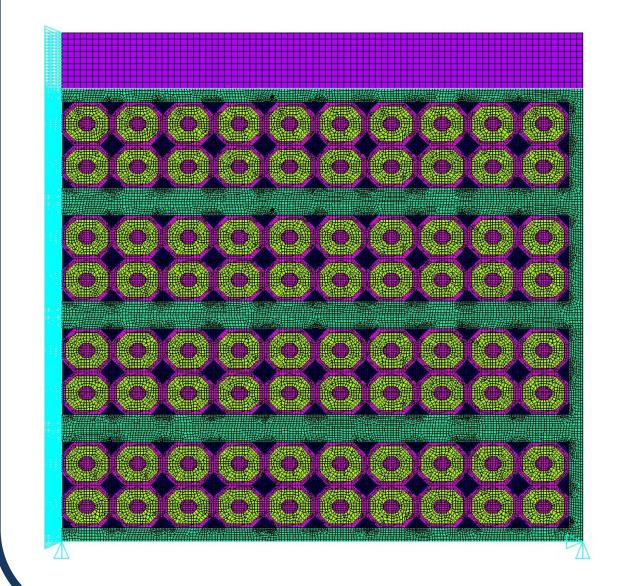
Novel Insulation Designs for Nb₃Sn Rutherford Cables for Particle Accelerator Magnets

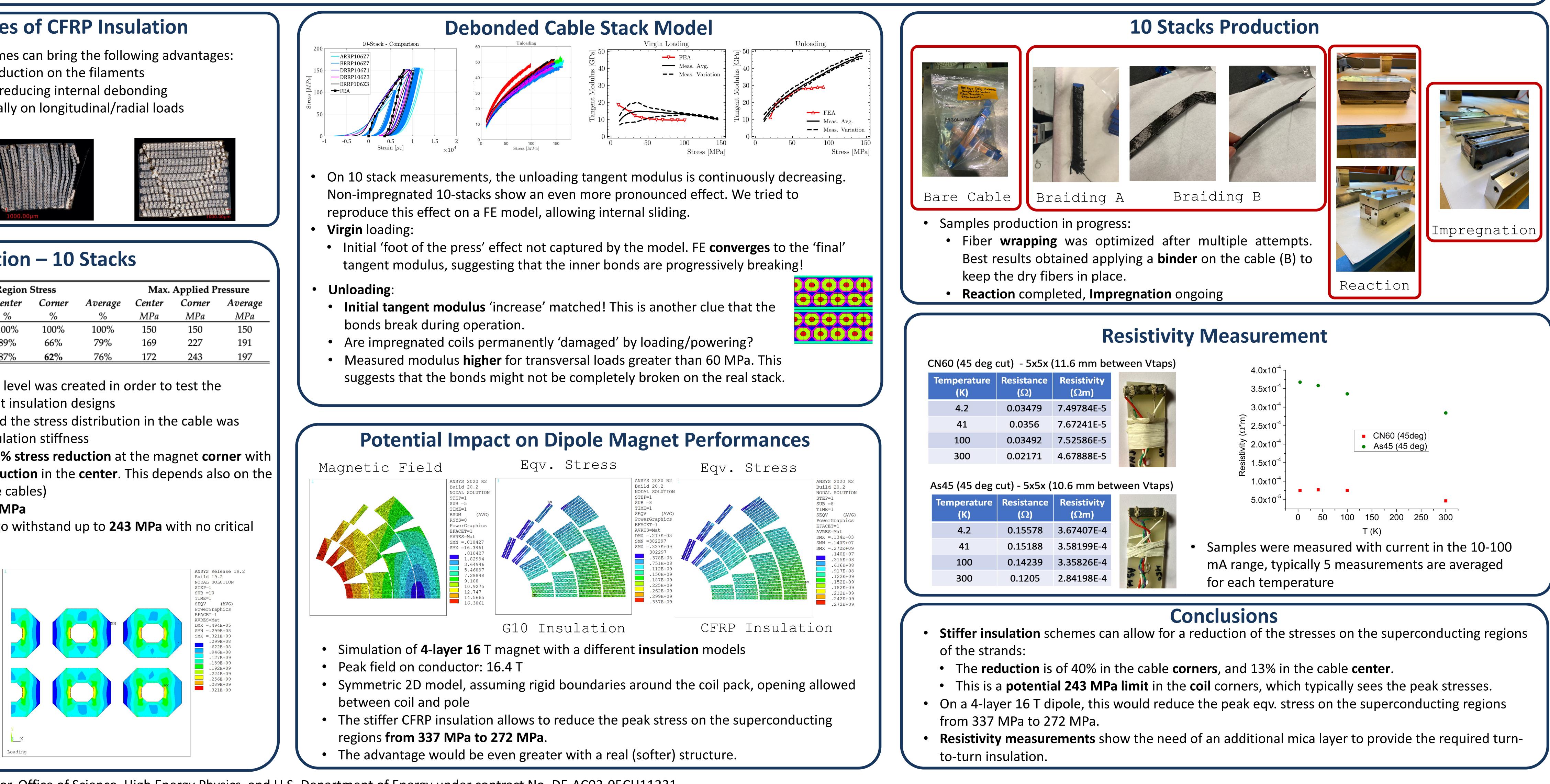
The strain sensitivity of Nb₃Sn is considered one of the main challenges that must be solved to use its full potential in particle accelerator magnets applied to the superconducting coils both during the assembly and cooldown to cryogenic temperatures, and then during powering. The composite coil reacts to these forces, that are distributed between the insulation and the cables. In most common designs, the cable insulation is made of impregnated glass fiber, which can be significantly damaged during the coil reaction. This paper presents novel stiffer heat resistant insulation designs, that might allow to reduce the stresses applied on the conductor. The potential impact on magnet performances was numerically demonstrated on FE models of cable stacks, and on a reference dipole magnet. The turn-to-turn resistance was measured at cryogenic temperatures, and the mechanical properties at room temperature.

Potential Advantages of CFRP Insulation

Stiffer and **stronger insulation** schemes can bring the following advantages:

- **Stress management**: strain reduction on the filaments
- Cable stability improvement, reducing internal debonding
- **Coil strength** increase, especially on longitudinal/radial loads





Stress Reduction – 10 Stacks

	Eins	Superconducting Region Stress						Max. Appli	
G10	LIIIS	Center	Corner	Average	Center	Corner	Average	Center	Corr
	GPa	MPa	MPa	MPa	%	%	%	MPa	MP
CFRP	12	227	224	228	100%	100%	100%	150	150
	200	201	148	179	89%	66%	79%	169	222
	250	198	138	174	87%	62%	76%	172	243

- A cable stack **model** at the 'strand' level was created in order to test the potential performances of different insulation designs
- A transversal load was applied, and the stress distribution in the cable was computed as a function of the insulation stiffness
- **CFRP/Mica** insulation schemes: **40% stress reduction** at the magnet **corner** with respect to glass fiber, and **13% reduction** in the **center**. This depends also on the cable width (less effective for large cables)
- The current pressure 'limit' is **150 MPa**
- Scaling, this design might be able to withstand up to **243 MPa** with no critical current reduction!

This work was supported by the Director, Office of Science, High Energy Physics, and U.S. Department of Energy under contract No. DE-AC02-05CH11231.

G. Vallone, E. Anderssen, C. Bird, T. Claybaugh, T. Johnson, M. Martchevskii, M. Naus, I. Pong, and J. Sullivan Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720

ABSTRACT

WED-PO2-616-09

