

# Characterizing the Performance of Nb<sub>3</sub>Sn Accelerator Magnets with Advanced V-I Measurements

UNIVERSITY OF TWENTE.

Ruben Keijzer<sup>1,2</sup>, Gerard Willering<sup>1</sup>, Giovanni Succi<sup>1</sup>, Bernardo Bordini<sup>1</sup>, Luca Bottura<sup>1</sup>, Franco J. Mangiarotti<sup>1</sup>, Marc Dhallé<sup>2</sup>, Herman H. J. ten Kate<sup>2</sup> <sup>1</sup> CERN, Geneva, Switzerland <sup>2</sup> University of Twente, Enschede, The Netherlands

A spot-like, local inhomogeneous, degradation in a Rutherford cable causes current redistribution, which leads to decaying voltages on the current plateaus of V-I measurements.

## Advanced V-I measurements

- High resolution V-I measurements are used to determine conductor degradation.
- Voltages over coil cable segments measured on plateaus of a staircase-type current ramp.



- build-up on successive plateaus indicates conductor degradation.
- Constant voltage 

  homogeneous degradation.
- Decaying voltage → local degradation.

## Decaying voltage

Certain HL-LHC type of magnets show decaying voltages [1]:

- Time constant of the order of 100 to 1000 s,
- Range from of 0 to 20  $\mu$ V,
- Can be simulated with a continuum model.



## **Hypothesis and Model**

- Decaying voltages caused degradation in the Rutherford cable.
- Current then redistributes around the degraded spot through a current diffusion process.



disitributed parameters model is used: a subset of strands have a local, full or partial degradation, to study the general behaviour of the current redistribution process [2], [3].

#### Results

Simulation of 16 strand cable & 6 degraded strands:

- Figure 4 shows time evolution of current at position of degradation.
- 8 strands are shown, since model is symmetric.
- Strands 1 to 3 carry no current.
- Adjacent strand 4 initially carries all excess current.
- When strand 4 reaches critical current  $\rightarrow$ current cascades to neighboring strand 5.



## Current profile in strands around a bad spot

- Current imbalance extends over more than 10 meter away from the degraded region.
- Profile widens with time  $\rightarrow$  voltages decrease.



### **Voltage profiles**

- Voltage rise in degraded strands close to defect.
- Degraded strand  $\rightarrow$  sharp voltage drop.
- Intact strand  $\rightarrow$  gradual voltage drop.
- Measuring in front or after the degraded region,  $(V_1-V_2)$  can yield a negative voltage.
- Measuring over the degraded region (V<sub>2</sub>-V<sub>3</sub>) always yields a positive voltage.



Fig. 7 shows a measured example of positive and negative decaying voltages over conductor sections [4]

## Ramp sequences

- More complex ramp sequences can also be matched.
- Time constants during start of last 3 current plateaus are smaller in the simulated voltage.



## **Key issues and Next steps**

- What is the impact of the current imbalance on:
- Stability,
- Early quench development,
- Quench propagation velocity.

#### References

[1] G. Willering "MBHA002 final test report", https://edms.cern.ch/document/2611118/1

[2] L. Bottura, C. Rosso, M. Breschi "A general model model for Thermal, Electric and Hydraulic Analysis of superconducting cables" Cryogenics 40 (2000) 617-626.

[3] A. Akhmetov, L. Bottura, M. Breschi, P. L. Ribani, "A theoretical investigation in flat two-layer superconducting cables" Cryogenics 40 (2000) 627-635.

[4] F. J. Mangiarotti et al., "Power Test of the First Two MQXFB Quadrupole Magnets Built at CERN for the HL-LHC Low-Beta Insertion" IEEE Trans. Appl. Supercond. Not yet published.



ruben.keijzer@cern.ch