(e) KEK

Magnetic measurements of a full-scale prototype of the HL-LHC beam separation dipole

4-way spit stainess steel collars	New crab cavities will the recombination dipo in-one quadruple (Q4) Design parameters	BXF
	Aperture (mm)	150
Field tuning -	Find integral at $7 \mathrm{TeV}(\mathrm{T} \cdot \mathrm{m}$)	35
	Nominal field (T)	5.6
	Magnetic length (m)	6.26
MB outer) + + 5	Stored energy (kJm)	340
Ral insuation ${ }_{\text {Rasiation resistan }}$	Nominal current Iom ($\mathrm{k} A)$	${ }^{12.11}$
GFRP wedge for dose of 25 MGy	Operation temperature (K)	1.9
(S2 glass fiber + Bismaleimide-Triazine (BT) resin)	\| b_{8} integral\| (unit)	<2.9
	\| b_{s} integral\| (unit)	< 1.5

Full-scale D1 magnet reception tests at KEK

Cold mass to be
delivered to CERN Horizontal warm test only

b3 issue in short models

Summary of measured/calculated b_{3} and pre-loads

Aperture (mm)	MBXFS 1	MBXFS2	MBXFS3
Measured b_{s} at magnetic center for $1=3 \mathrm{kA}$ (unit)	6.23	20.89	24.05
Calculated b_{3} (unit)	0.83	2.12	1.88
Measured pre-load (MPa)	65	111	114

- The HL-LHC is planned to be constructed for further exploration of the physics beyond the
The following targets can be achieved by
reducing β^{*} :
- Peak lumin
Peak luminosity: $5 \times 10^{-34} \mathrm{~cm}^{-2 s^{-1}}$
Total integrated luminosity: 3000 fb
To reduce β^{*} :
\rightarrow Aperture of inner triplets (Q1-Q3) : 70 mm $\rightarrow 150 \mathrm{~mm}$,
the triplet
New crab cavities will be installed between dion Design parameters of MBXF

Deliverables for HL -LHC 1 full-scale prototype cold mass (MBXFP)
6 series cold masses (MBXF1-6) MBXFP is being fabricated by Hitachi Ltd
The first vertical cold test / horizontal warm test were performed in this summer 2021

- The first model (MBXFS1) Unsatisfied training performance due to lack of pre-load (65 MPa
- The second model (MBXFS2) - Pre-load was increased to $\sim 115 \mathrm{MPa}$ and the magnetic design was updated accordingly
- Good training performance Large offset of $b_{3}(\sim 20$ units) was observed
The third model (MBXFS3) - Reproduced model of the 2nd one - Similar offset b_{3} was confirmed event at lower current (3 kA) - Ensured that this comes from geometrical reason

- Reason

- Misunderstandings of the size of compression in the cable insulation thickness
Actual coil cross section differs from designed one

MBXFP magnetic design

Procedure

 GoalTarget pre-load $=115 \mathrm{MPa}$
Target b_{3} integral at $I_{\text {nom }}=0$ unit
Sensitivity study
-Optimization is performed in the 2D computation (Roxie) at lower current
I) Determine the target b3 in Roxie $2 \mathrm{D}\left(=b_{3}{ }^{2 D}\right)$ so that the b_{3} integral at $I_{\text {nom }}\left(=\overline{b_{3}}{ }^{12 \mathrm{KA}}\right)$ becomes zero
II) Model the coil geometry (cross section, coil end) and perform the 3D computatio (Opera3D) for crosschecking its field quality and integrals
III) Go back to I) and iterate this procedure if necessary so that $\overline{b_{3}}{ }^{12 \mathrm{KA}}$ converges into 0

OPERA3D prediction		OPERA3D prediction
$\bar{b}_{3}=\frac{\int_{z=-4000}^{z=-2810} B_{3}(z) d z}{y_{z=-4000}^{z=-400} B_{1}(z) d z} \times 10^{4}$	$4+\left\lvert\, \begin{aligned} & \frac{\int_{z=-2810}^{z=2810} B_{3}(z) d z}{\int_{z=-4000}^{z=4000} B_{1}(z) d z} \times 10^{4} \end{aligned}\right.$	$\begin{aligned} & \frac{\substack{z=2810 \\ z=400 \\ B_{3}(z) d z \\ \int_{z}^{z=4000} \\ z=-4000}}{} B_{1}(z) d z \end{aligned} 10^{4}$
Return end		Lead end
$\int_{S S} B_{3}(z) d z \times 10^{4}=B_{\mathrm{ref}} \int_{S S} b_{3}(z) d z$		
	$\simeq B_{\text {ref }} \int_{S S} b_{3}(z=0) d z+\Delta \bar{b}_{3}^{\text {shape }}$	
$\begin{aligned} & \text { 3.51 unit }+ \\ & \left(b_{3}\right. \text { difference between } \\ & \text { MBXFS2 and } 3 \text {) } \end{aligned}$	$\left.=\underset{\substack{\text { ref }}}{\text { Input from } \cdot\left(b_{3}^{2 \mathrm{D}}\right.}+\Delta b_{3}^{\text {geometrical Transition Correction }}+\Delta b_{S S}^{3 \mathrm{D}}+\Delta b_{3}^{12 \mathrm{kA}}\right) \cdot \int_{S} d z$	
	$\xrightarrow{+\Delta \Delta_{s}^{\text {shape }}} \underset{ }{+3.01 \text { unit }}$	

Given the formula above $b_{3}{ }^{2 D}$ is set to -5 unit a new cross section was proposed for prototype

Design adapted for prototype

- During fabrication thickness of cable insulation, used in MBXFP, was found to be thicker than our expectation - designed thickness : 0.155 mm

Action: reduce thickness of pole shim and MP shim to compensate increase of the azimuthal coil lengt
Minimal modification for keeping schedul

- Not perfect optimization, but the target sextupole ($b_{3}{ }^{2 D}$) can be tuned around -5 units which is almost equal to the ideal one - b_{5} cannot be fully optimized due to design constraints

Two dimensional field qually

($b_{3}{ }^{2 D}$ in Roxie2D)			Cable layout for MBXFP		
	Ideal mode	Adapted		MBXF	
b_{8}	-5.00	-5.16	Block	¢	a
b_{5}	-3.00	1.25	1	1.1600	0.0000
b_{7}	0.18	0.97	2	28.0040	27.4005
b_{9}	-0.10	0.48	3	50.6138	52.3400
b_{17}	-0.06	0.06	4	71.0417	68.9141

Magnetic measurement of MBXFP

Strategy 1. Warn MM during $\underset{\rightarrow}{\rightarrow} \rightarrow$ Warm MM at the Hitachi premise (after yoking) $\xrightarrow{\rightarrow}$ magnet assembly $\begin{array}{ll}\rightarrow \text { First validation of our methodology (b3 reduction) } \\ & \text { Feedback to design of series magnet (MBXF1-6) }\end{array}$ \rightarrow Feedback to design of series magnet (MBXF1-6)
\rightarrow Cold MM at the KEK pit to check field quality (FQ) at nominal operating condition Reproducibility check of results from 1 (MM at Hitachi)
\rightarrow Measurement of the XY-magnetic center \rightarrow Measurement of the absolute field angle \rightarrow Analyses are ongoing

1. Warm MM at Hitachi

- Development of the portable MM system (rotating coil) to
be easily delivered to the Hitachi premise
The $1.6-\mathrm{m}$ shaft can cover a straight section of the 7 m
magnet and verify field quality (FQ) of the new magnetic
design (i.e. coil cross section)
-Large b_{3} offset disappears (20 un
Expectation :-2.3 unit (2) units -> -4.9 units)
\checkmark Measured b_{3} is 2.6 units lower than expectation \checkmark This is because lack of understandings for mechanism of cable compression (insulation)
e first series magnet

2. Cold MM at KEK pit

- Magnet inserted into the 9-m deep vertical cryostat Data-calculation comparison of field integral - Rotating coil upgrade : New Printed Circuit Board for h
V Long (500) x $1+\operatorname{short}$ (50) $\times 2$
10 m long shaft to fully cover the magnet
Modified computation model
Developed after the Hitachi MM Sossible for precise prediction of FO for series

Conclusion and Prospects

Succeed in substan tunings are necessary for series Horizontal warm test was done and analyses design have been studied after the Hitachi MM and validated throug 3D computation
With the new mode
With the new model one can expect

Magnetic measurements of a full-scale prototype of the HL-LHC beam separation dipole
 a) High Energy Accelerator Research Organization (KEK), b) European Organization for Nuclear Research (E-mail: Kentsuzu@post.kek.ip)

Whstract High energy accelerator research organization, KEK, have engaged in development of the beam separation dipole toward the HL-LHC project. We have performed magnetic measurement for the first full-scale magnet (MBXFP) and validated our design methodology. We first review the design procedure for the prototype and then show data-calculation comparisons. Finally prospects for series magnet is described.

Summary of KEK MM system

| | Vertical Stand | | Horizontal | Portable |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | -2020 (MBXFS1-3) | 2021- (MBXFP-) | stand | |
| System | | | | |

Warm MM at the Hitachi premise

Apparatus

Feeddown (FD) analysis

Two algorithms

$$
\begin{aligned}
& \text { Minimize } c_{14} \text { by } c_{15} \\
& v c_{n}=\operatorname{sqrt}\left(b_{n}^{2}+a_{n}^{2}\right.
\end{aligned}
$$

b_{15} has an intrinsic offset (~-1 unit) which can be used to minimize b_{14}
2. Minimize multi $c_{2 n}$ simulatenously
\checkmark Find a pair of (dx,dy) which maximize a probability :

$$
P=\prod_{i} \exp \left[-w_{i} \frac{\left\{c_{i}(d x, d y)-c_{i}^{t}\right\}^{2}}{\sigma_{c_{i}}^{2}}\right] \begin{gathered}
w_{i} \text { weight } \\
c_{i}=\text { trueue } C_{i}
\end{gathered}
$$

$$
-\ln P=\sum_{i}\left[w_{i} \frac{\left\{c_{i}(d x, d y)-c_{i}^{t}\right]^{2}}{\sigma_{c i}^{2}}\right] \begin{gathered}
\sigma_{i}=\text { Standard erric } \\
a_{i}(50 \text { sample })
\end{gathered}
$$

Measurement precision

Simulation models

Two dimensional cross section

Geometrical effect (KEK pit vs. CERN cryostat)

Vertical MM at the KEK cryostat

- One long coil sandwiched by 2 shor ones
- Long coil is for integral measurement
- Short coils are for profile
measurement
- Data coverage
- 10m-long shaft to entirely cover the magnet
FQ summary (feeddown is not applied to data)

	Magnetic center ($\mathrm{Z}=-250 \mathrm{to}+250 \mathrm{~mm}$)		Integral	
	Opera3D calc.*	Data	Opera3D calc.*	Data
b_{3} (units)	-7.97	-8.51	-9.36	-12.66
b_{5}	6.96	6.68	6.67	6.45
b_{7}	0.77	0.98	0.32	0.50
b_{9}	1.15	1.35	0.62	0.75
b_{11}	0.05	-0.06	-0.17	-0.24
b_{13}	-0.74	-1.03	-0.80	-0.96
b_{15}	-1.34	-1.52	-1.31	-1.38

(*)Modified model developed after the Hitachi MM (v| I.2.0) Geometrical + saturation corrections applied to the straight section
$-\Delta b_{3}=4.13+2.02$ units $\left(\Delta b_{3}\right.$ geom $\left.+\Delta b_{3}{ }^{12 k A}\right)$
$-\Delta b_{5}=1.02$ units (Δb_{5} geom : oval correction)

- No correction applied to higher order ($n \geq 7$)

Good correlation observed !!

