## Assessment of coil design and pulse unit parameters for the optimization in the electromagnetic forming process of metal sheet

### Evandro Paese<sup>1</sup>, Martin Geier<sup>2</sup>, Roberto Homrich<sup>2</sup>, Rodrigo Rossi<sup>2</sup>, Pedro Rosa<sup>3</sup>

<sup>1</sup> Universidade de Caxias do Sul, Bento Gonçalves, RS 95700-00, Brazil <sup>2</sup> Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-190, Brazil <sup>3</sup> Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa Portugal

#### I. INTRODUCTION

The development of the EMF process has demanded a constant reassessment of which process parameters are significant and how they can optimize the process based on the chosen criteria of the parameters. This work proposes the regression equations based on the RSM (Response Surface Methodology) analysis to predict the electrical and mechanical process responses and consequently to find controllable factor settings that optimize the EMF of sheet metals using a flat spiral coil according to desired criteria.

#### **II. MATERIALS AND METHODS**

Process parameters may affect quantitatively the EMF responses, so the analysis of the process in this study included key independent variables, such as capacitance C, energy U, and the number of coil windings n, while the response variables were the maximum electromagnetic force  $F_{max}$  (numerically calculated), the workpiece height h, the rise time  $t_{rise}$  and peak of the discharge current  $I_{peak}$  (Tables I and II). The capacitance is varied by changing the circuit connection of two 50µF and 5,000 V capacitors.

Table I – EMF parameters

|             | Parameter              | Value             |
|-------------|------------------------|-------------------|
|             | Outer diameter $(D_0)$ | 67.5 mm           |
|             | Inner diameter $(D_i)$ | 7.5 mm            |
| Spiral coil | Cross section $(A_a)$  | $20 \text{ mm}^2$ |
| -           | Gap between coil and   | 1 mm              |
|             | workpiece              | 1 mm              |
|             | Material               | AA1100 (annealed) |
|             | Diameter               | 110 mm            |
| Workpiece   | Thickness              | 1 mm              |
| *           | Cavity diameter        | 80 mm             |
|             | Cavity depth           | 40 mm             |

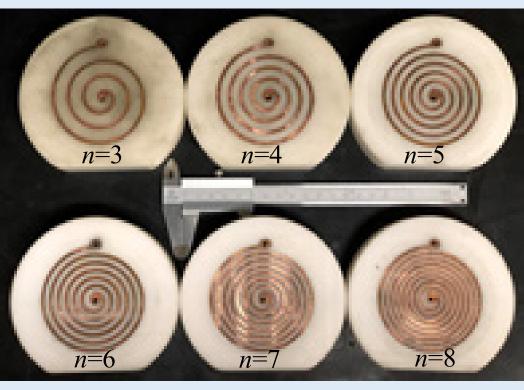



Figure 1 – Spiral coils used for parametric experiments.

The experiments design were established with custom designs by using the Design Expert Software (Table III) and, as example, Fig. 2 shows the variable h for workpiece height.


| Controlable     |      |      | Levels | 5 |   |   |
|-----------------|------|------|--------|---|---|---|
| Factors         | 1    | 2    | 3      | 4 | 5 | 6 |
| $U(\mathbf{J})$ | 1000 | 1100 | 1200   | - | - | - |
| $C(\mu F)$      | 50   | 100  | 200    | - | - | - |
| n               | 3    | 4    | 5      | 6 | 7 | 8 |

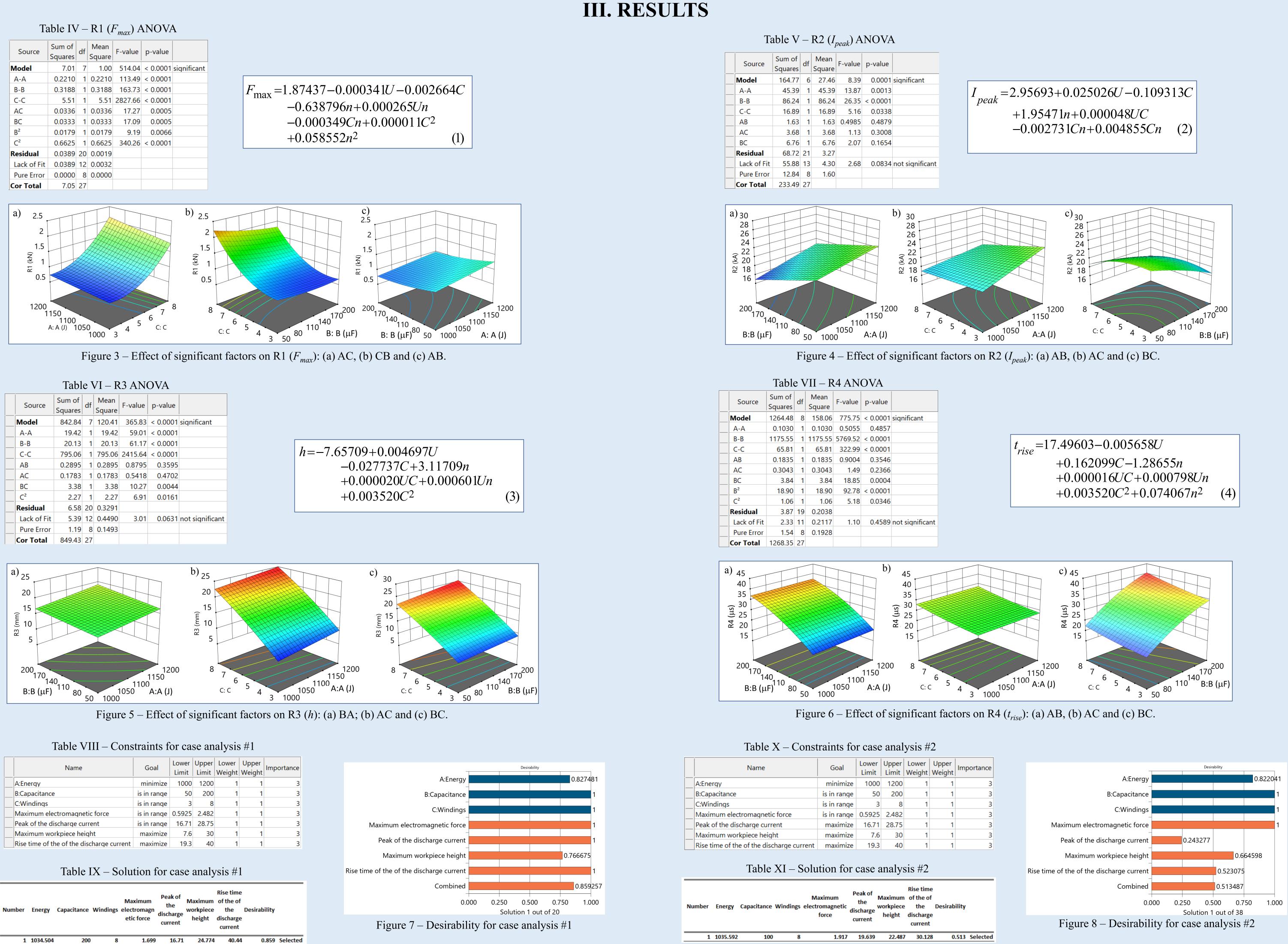
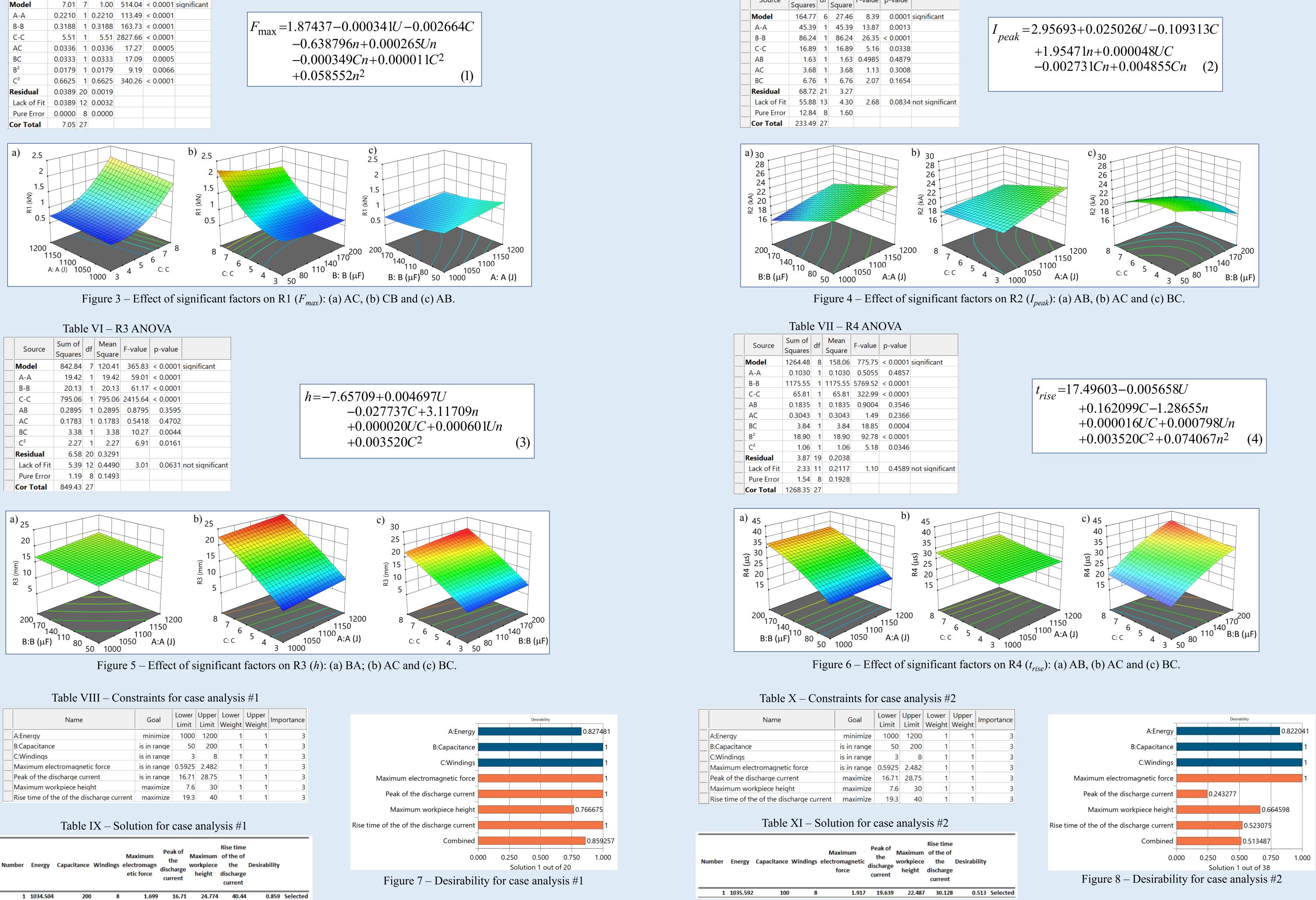



Figure 2 – Variable *h* (workpiece height).


|     |          | Та       | ble III – | Design of e | xperiments |            |            |
|-----|----------|----------|-----------|-------------|------------|------------|------------|
|     | Factor 1 | Factor 2 | Factor 3  | Response 1  | Response 2 | Response 3 | Response 4 |
| Run | A:A      | B:B      | C:C       | R1          | R2         | R3         | R4         |
|     | J        | μF       |           | kN          | kA         | mm         | μs         |
| 1   | 1100     | 50       | 5         | 0.9655      | 23.5       | 13.79      | 20.5       |
| 2   | 1200     | 100      | 3         | 0.8129      | 22.22      | 8.9        | 26         |
| 3   | 1100     | 50       | 5         | 0.9655      | 27.3       | 13.51      | 20.4       |
| 4   | 1100     | 100      | 3         | 0.7452      | 21.78      | 8.22       | 26.5       |
| 5   | 1200     | 200      | 7         | 1.486       | 20.38      | 23.2       | 39.5       |
| 6   | 1100     | 200      | 3         | 0.6517      | 19.6       | 8.39       | 35         |
| 7   | 1000     | 200      | 3         | 0.5925      | 16.71      | 8.2        | 35         |
| 8   | 1200     | 50       | 6         | 1.46        | 21.61      | 17.68      | 20.85      |
| 9   | 1000     | 100      | 5         | 0.8288      | 21.2       | 14.29      | 27         |
| 10  | 1000     | 100      | 5         | 0.8288      | 22.2       | 14.27      | 26.9       |
| 11  | 1200     | 100      | 5         | 0.9946      | 25.7       | 16.16      | 27         |
| 12  | 1200     | 50       | 8         | 2.482       | 20.59      | 22.83      | 22         |
| 13  | 1000     | 50       | 6         | 1.217       | 19.6       | 16.32      | 21         |
| 14  | 1100     | 100      | 3         | 0.7452      | 20.91      | 8.2        | 26.25      |
| 15  | 1000     | 200      | 8         | 1.647       | 16.99      | 23.85      | 40         |
| 16  | 1100     | 100      | 8         | 2           | 21.78      | 24.18      | 30.75      |
| 17  | 1000     | 50       | 8         | 2.068       | 19.79      | 20.24      | 22         |
| 18  | 1100     | 100      | 8         | 2           | 21.35      | 23.03      | 30         |
| 19  | 1000     | 50       | 3         | 0.7874      | 23.09      | 7.6        | 19.3       |
| 20  | 1100     | 200      | 6         | 1.035       | 18.3       | 19.34      | 38.4       |
| 21  | 1200     | 100      | 5         | 0.9946      | 24.83      | 15.98      | 27.75      |
| 22  | 1100     | 200      | 6         | 1.035       | 17.42      | 19.36      | 37.1       |
| 23  | 1200     | 200      | 4         | 0.7478      | 22.65      | 14.52      | 35         |
| 24  | 1100     | 100      | 8         | 2           | 19.17      | 23.76      | 30         |
| 25  | 1200     | 50       | 4         | 0.9102      | 28.75      | 13.2       | 19.5       |
| 26  | 1000     | 100      | 7         | 1.321       | 20.91      | 20.08      | 29.5       |
| 27  | 1000     | 200      | 6         | 0.9412      | 16.99      | 18.1       | 37         |
| 28  | 1200     | 200      | 7         | 1.486       | 20.04      | 24.16      | 39.5       |

## **THU-PO3-719-01**





|                | Tabl              | e V | VI - R         | C3 ANG  | OVA      |                 |                      |
|----------------|-------------------|-----|----------------|---------|----------|-----------------|----------------------|
| Source         | Sum of<br>Squares | df  | Mean<br>Square | F-value | p-value  |                 |                      |
| Model          | 842.84            | 7   | 120.41         | 365.83  | < 0.0001 | significant     |                      |
| A-A            | 19.42             | 1   | 19.42          | 59.01   | < 0.0001 |                 |                      |
| B-B            | 20.13             | 1   | 20.13          | 61.17   | < 0.0001 |                 |                      |
| C-C            | 795.06            | 1   | 795.06         | 2415.64 | < 0.0001 |                 | h = -7.65709 + 0.000 |
| AB             | 0.2895            | 1   | 0.2895         | 0.8795  | 0.3595   |                 | -0.02773             |
| AC             | 0.1783            | 1   | 0.1783         | 0.5418  | 0.4702   |                 | +0.00002             |
| BC             | 3.38              | 1   | 3.38           | 10.27   | 0.0044   |                 |                      |
| C <sup>2</sup> | 2.27              | 1   | 2.27           | 6.91    | 0.0161   |                 | +0.00352             |
| Residual       | 6.58              | 20  | 0.3291         |         |          |                 |                      |
| Lack of Fit    | 5.39              | 12  | 0.4490         | 3.01    | 0.0631   | not significant |                      |
| Pure Error     | 1.19              | 8   | 0.1493         |         |          |                 |                      |
| Cor Total      | 849.43            | 27  |                |         |          |                 |                      |



| Name                                                          | Goal                              | Lower<br>Limit |             |                                | Upper<br>Weight | Importance |   |       |
|---------------------------------------------------------------|-----------------------------------|----------------|-------------|--------------------------------|-----------------|------------|---|-------|
| A:Energy                                                      | minimize                          | 1000           | 1200        | 1                              | 1               | 3          |   |       |
| 3:Capacitance                                                 | is in range                       | 50             | 200         | 1                              | 1               | 3          |   |       |
| C:Windings                                                    | is in range                       | 3              | 8           | 1                              | 1               | 3          |   |       |
| Maximum electromagnetic force                                 | is in range                       | 0.5925         | 2.482       | 1                              | 1               | 3          |   |       |
| Peak of the discharge current                                 | is in range                       | 16.71          | 28.75       | 1                              | 1               | 3          |   | Maxir |
| Maximum workpiece height                                      | maximize                          | 7.6            | 30          | 1                              | 1               | 3          |   |       |
| naximani workpreee nergite                                    |                                   |                |             |                                |                 |            |   |       |
|                                                               | maximize                          | 19.3           |             | 1                              | 1               | 3          |   | Pe    |
| Rise time of the of the discharge current $Table IX - Solute$ | maximize<br>tion for<br>ximum Pea | 19.3<br>Case   | 40<br>analy | /SIS #<br>Rise tim<br>of the o | e               |            | = |       |

From this study, the following conclusions are drawn:

- improve the forming process.

International Conference on Magnet Technology Fukuoka, Japan Nov. 15-19, 2021





# **IV. CONCLUSION**

• Empirical relationships were developed using statistical tools to predict selected responses of the free bulging EMF process using a flat spiral coil. • The 3D surfaces can show the main and interactions effects of significant process parameters.

• Despite the discharge current peak being an important response of EMF pulse units, the rise time of the discharge current was essential to reach the higher workpiece height. • The maximum workpiece height h of 24.77 mm was achieved for the combination U=1034. 5J,  $C=200 \mu$ F, and n=8. It can be noted that the coil winding number is significant to

• Finally, the significant process parameters were identified, outlining optimum geometry and pulse unit parameters, which can aid the design of flat spiral coils and electrical components for the EMF process. Multi-response optimization by desirability analysis can also improve the EMF process efficiency, enhancing the forming process with minimal energy.