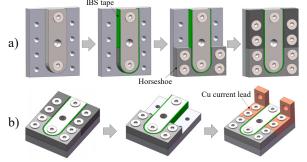
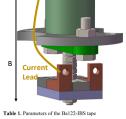


Effect of different bending diameters on the current-carrying capacity of iron-based superconducting tapes





中国科学院高能物理研究所 中科院高能所超导磁体组 Institute of High Energy Physics, CAS Superconducting Magnet Group, IHEP Chunyan Li¹. Rui Kang¹, Yanchang Zhu², Zhen Zhang¹, Yingzhe Wang¹, Chengtao Wang¹, Jin Zhou¹, Huanli Yao¹, Xianping Zhang², Dongliang Wang², Cong Liu², Fang Liu³, Yanwei Ma^{2*} and Qingjin Xu^{1*}

The iron-based superconductor (IBS) is a good candidate for high field magnet applications. The bending effect and properties of IBS tapes were systematically investigated in this work. The bent $Ba_{1-x}K_xFe_2As_2$ (Ba122/Ag/AgSn) 7-filamentary tapes with different bending diameters (D=10, 15, 20, 25, 30 mm) were prepared by wind-and-react method. **The current-carrying capacity of bent IBS tapes was tested and compared.** The observation of inner superconducting cores and the stress analysis of bent tapes were also conducted to clarify what happened in bent IBS tapes.

Schematic graphs of the preparation process of bent IBS tapes, a) before the heat-treatment, b) after the heat-treatment

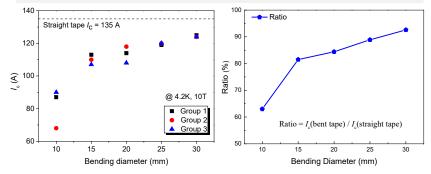
 Parameters
 Unit
 Value

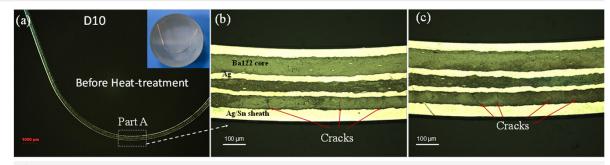
 Thickness of IBs tape
 mm
 0.33

 Width of IBs tape
 mm
 4.7

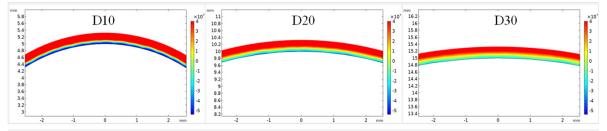
 SC/Non-SC ratio
 1.5

 Number of filaments
 7

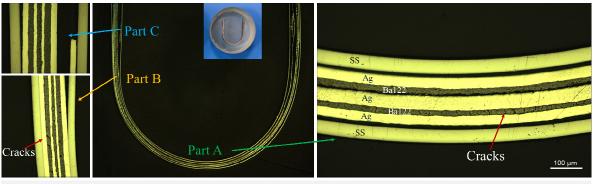

 Bedding diameter
 mm
 101/5/2025/30


 Le@ 4.2R, LOTT
 A
 135

✓ A special mechanical structure was designed to prevent the heat-treated IBS tapes from being damaged again during soldering and testing.



- \checkmark The bent IBS tapes with different bending diameters were prepared;
- ✓ The Ic of bent IBS tapes decreases with smaller bending diameters.



✓ Before heat-treatment, D10 tape shows that cracks appearing regularly in part of the superconducting cores under tensile stress.

- √ The simulated stress distributions of the D10, D20 and D30 bent tapes were obviously different.
- ✓ The cracks observed in D10 tape were due to the large tensile stress.

- \checkmark After heat-treatment, a large amount of cracks still can be seen in the D10 tape.
- \checkmark No crack was found in the superconducting core that is not stressed or subjected to compressive stress.