

Portable, desktop high-field magnet systems using bulk high-temperature superconductors

Mark Ainslie

Engineering & Physical Sciences Research Council (EPSRC)

Early Career Fellow

Co-authors: Y. Tsui, D. Moseley, A. Dennis, Y-H. Shi, M. Beck, V. Cientanni, D. Cardwell, J. Durrell

Bulk Superconductivity Group, Department of Engineering

Bulk Superconductors

- Bulk superconducting materials can 'trap' large magnetic fields
- Achieved by pinning penetrated magnetic field (quantised flux lines)
 → macroscopic electrical currents
- Magnetisation <u>increases</u> with sample volume

A large, single grain bulk superconductor

Bulk Superconductors

- Bulk superconducting materials can 'trap' large magnetic fields
- Achieved by pinning penetrated magnetic field (quantised flux lines)
 → macroscopic electrical currents
- Magnetisation <u>increases</u> with sample volume
- Trapped field given by

$$\mathbf{B_{trap}} = k \, \mu_0 \, J_c \, R$$

$$where \quad k = \frac{t_{\rm B}}{2R} \cdot \ln \left(\frac{R + \sqrt{R^2 + t_{\rm B}^2}}{t_{\rm B}} \right)$$

Typical trapped magnetic field profile of a bulk superconductor

Portable High-Field Magnet Systems

Cambridge's portable bulk magnet system (1st generation)

Portable bulk magnet system, Yokoyama *et al*. (Ashikaga Inst. of Tech., Japan)

Magnetic separation
Medical: NMR/MRI, magnetic drug delivery
Lorentz force velocimetry
Electromagnetic acoustic transducer (EMAT)

Bulk NMR/MRI magnet system (RIKEN, Japan)

Pulsed Field Magnetisation (PFM)

- PFM technique: fast, compact, mobile, relatively inexpensive
 - Stored energy in capacitor bank discharged through copper magnetising coil + pulse waveform control with IGBT switching

1st Generation Portable Bulk Magnet System (>3 T)

D. Zhou et al. 2017 Appl. Phys. Lett. 110 062601

1st generation portable bulk magnet system

- Flux jumps exploited to trap > 3 T @ 50 K
 (30 mm diameter Gd-Ba-Cu-O)
- Multi-pulse, stepwise-cooling (MPSC)
 PFM technique

2nd Generation Portable Bulk Magnet System

Solenoid or Split Coil Magnetisation

LN₂ Box

Split Coil

Split Coil

Vacuum

Can

Sample Information

Composition	Type	Manufacturer	Diameter, <i>D</i> [mm]	Thickness, <i>H</i> [mm]	FCM Data, 77 K [T]
YBCO	Disc	ATZ*	41.1	14	1.07
	Disc	CAN	41.3	13	1.09
GdBCO	Disc	BSG	38.6	11.3	1.02
	Disc	BSG	36.3	12.1	1.17
EuBCO	Disc	CAN	41.1	13	1.26
GdBCO	Ring	BSG	31.6 [ID = 13]	9.4	0.64

*courtesy of Dr Frank Werfel, ATZ

Solenoid – YBCO Discs – Single Pulse

Solenoid - GdBCO Discs - Single Pulse

Solenoid – EuBCO Disc – Single Pulse

CAN EuBCO *D* = 41.1 mm, *H* = 13 mm

Summary:

Trapped fields increased as operating temperature decreased (greater instability ~50 K); higher applied fields needed:

77 K \rightarrow 2 - 2.5 T to fully magnetise 65 K \rightarrow 2.75 - 3.25 T to fully magnetise 50 K \rightarrow ~3.5 T to fully magnetise

Highest trapped fields of 2.25 T ($B_{\rm app}$ = 3.9 T @ 50 K), EuBCO 2.25 T ($B_{\rm app}$ = 3.5 T @ 55 K), GdBCO #2

Solenoid – Discs – Two-Step MPSC PFM

BSG GdBCO #2 D = 36.3 mm, H = 12.1 mm

CAN EuBCO D = 41.1 mm, H = 13 mm

Split – Discs – Single Pulse

Summary:

Similar behaviour to solenoid coil Split coil trapped field slightly higher at higher temperatures (77, 65 K) slightly worse at 55 K Insertion of iron yoke slightly better vs no yoke

Solenoid – GdbCO Ring – Single + Multi-Pulse

Summary

- Bulk superconductors can be used in portable high-field magnet systems capable of generating magnetic fields of several tesla
- Extensive tests have been carried on our next generation magnet system, focussed on:
 - Flexibility (sample interchange; split or solenoid coil magnetisation)
 - Portability (compact design; no compressor or water-cooling)
 - Advanced PFM techniques (split coil with iron yoke; multi-pulse, multitemperature; waveform control; flux jump-assistance)
- 2.9 T trapped in a 36.3 mm diameter GdBCO disc at 49 K using a two-step, multi-pulse stepwise-cooling (MPSC) PFM technique
- 1.3 T trapped in a 31.6 mm diameter [ID = 13 mm] GdBCO ring at 55 K using an MPSC PFM technique

