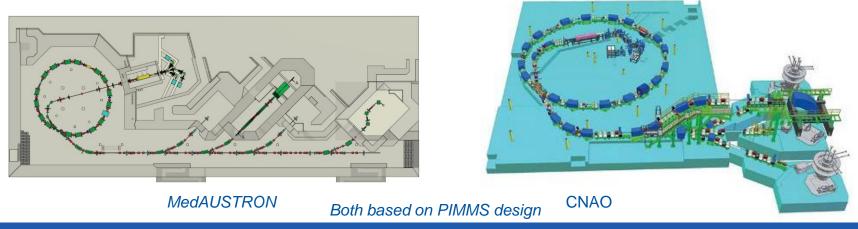
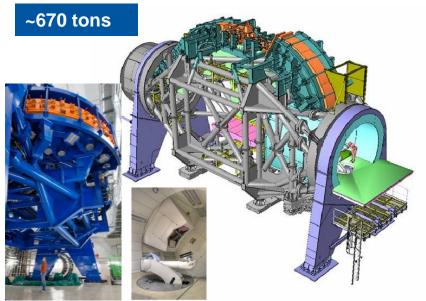


Design of a Curved Combined Function Bending Magnet Demonstrator for Hadron Therapy


M. Karppinen, V. Ferrentino, E. Ravaioli (CERN) Ch. Kokkinos (FEAC Engineering P.C.)

Acknowledgements: U. Amaldi (TERA Foundation) E. Benedetto, M. Cirilli, D. Tommasini, M. Vretenar (CERN)

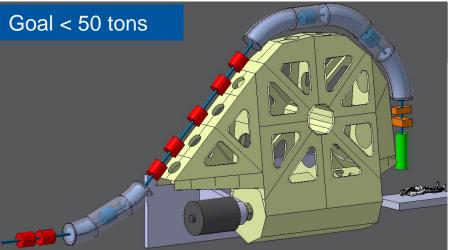

Introduction

- CNAO & MedAUSTRON intend to upgrade their radiotherapy facilities with a superconducting rotating gantry for heavy ion therapy
- Since spring 2019 regular meetings between CERN, CNAO, INFN and MedAUSTRON
 on novel ion gantry concepts
- CNAO aims to complete design within the next 3-5 years and to install the gantry within the next 7-10 years



Rotating Gantries for Carbon Ions

- Heidelberg Ion Beam Therapy Center (HIT)
- Normal conducting magnets
- Beam orbit radius 6.5 m, Length 25 m


- HIMAC at NIRS made by Toshiba
- Superconducting 2.37 T .. 2.88 T magnets
- Beam orbit radius 5.5 m, Length 13 m

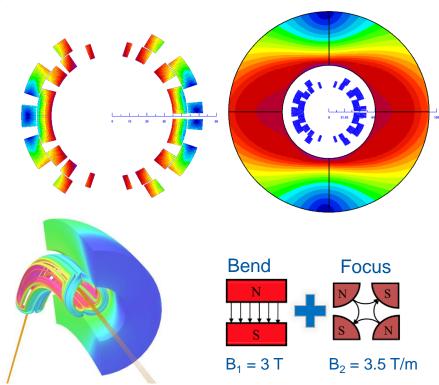
New Compact Gantry for ¹²C⁶⁺ Therapy

- Reduced complexity of the main magnets for maximum reliability
 - Two cryo-assemblies: 2 x 22.5°, 3 x 45°
 - $B_{nom} = 3 T$
 - $G_{nom} = \sim 3.5 \text{ T/m}$ (Combined function only)
 - dB/dt = 0.10 T/s
 - Aperture = ø70 mm
 - Radius of curvature = 2.207 m^{(*}
 - Field quality < 10⁻³
- Additional quadrupoles for tuning the optics
 - 3 x Superconducting $G_{nom} = 40 \text{ T/m}$
 - 7 x Normal conducting G_{nom} = 25 T/m

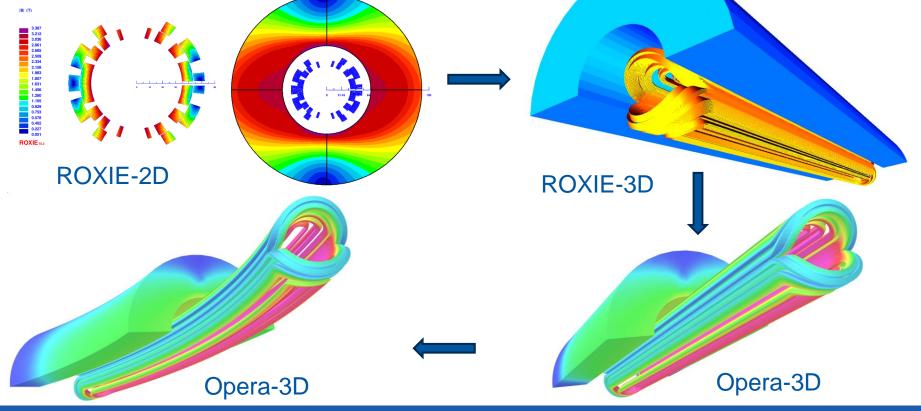
^{*)}For 430 MeV/u beam

- Beam orbit radius 6.37 m,
- Length ~16 m
- Momentum acceptance 1%

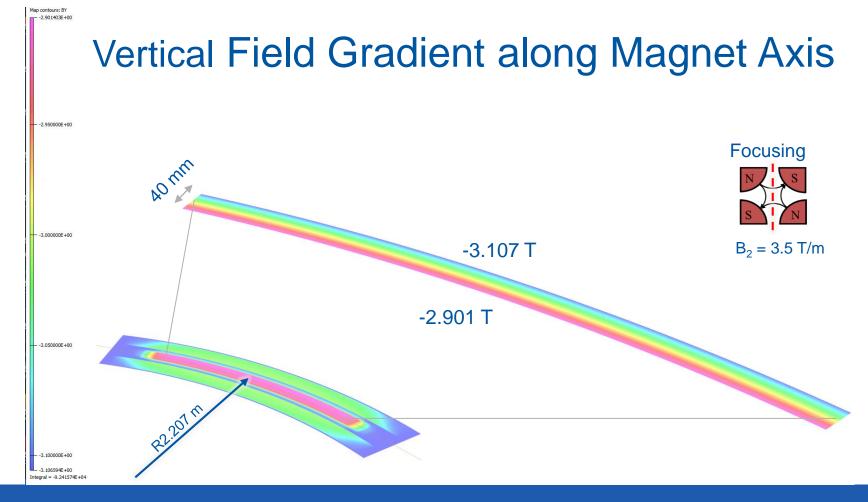
L. Gentini (CERN)

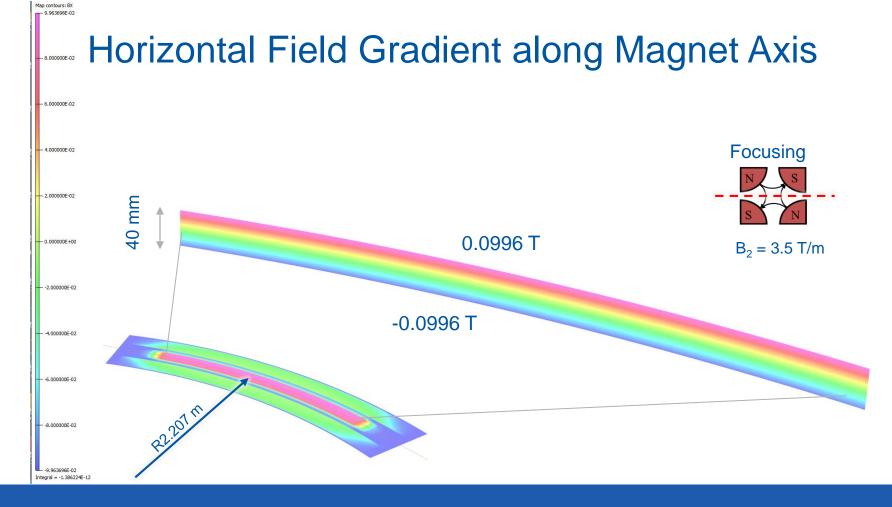

Curved Cos-Theta Combined Function Magnet

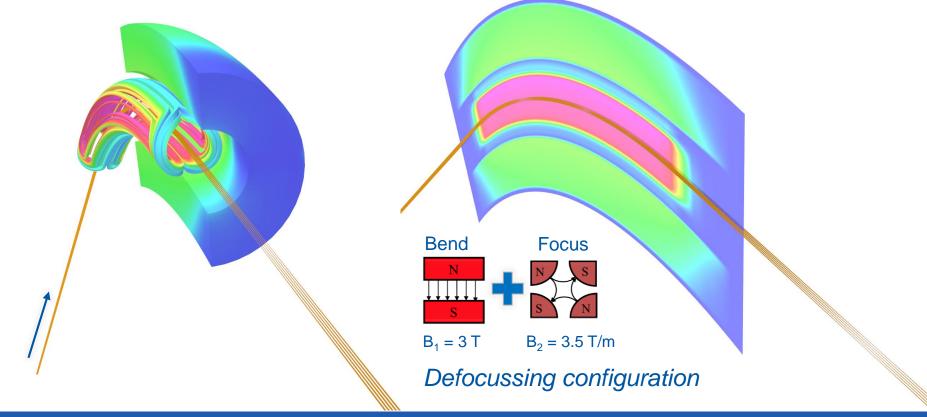
- Long experience from accelerator magnets (LHC, Tevatron, RHIC, etc)
 - Existing tooling and infrastructure, well-established manufacturing methods, trained personnel
- Specific aspects of a gantry magnet:
 - Fabrication of curved cos-theta coils
 - Assembly of curved cold-mass
 - Helium bath for cooling not permitted
 - Extraction of transient losses from conduction cooled coils
 - Field measurement in curved aperture
- Design, build and test a curved 30 ° demonstrator magnet meeting the gantry specification to validate the concept by 2024
 - First test in He-bath, then ideally with conduction cooling system
- Full scale 45° Prototype magnet
 - Include all lessons learned and target highest reliable performance for the 45° Prototype
 - Optimized for the final gantry specification according to optimal cooling and integration considerations

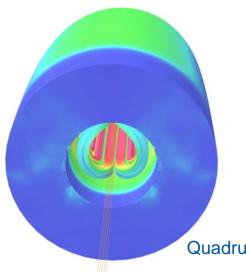

Combined Function Dipole

Parameter		Unit				
Nb-Ti strand diameter		0.48		mm		
Filament diameter		6		μm		
Cu:Sc ratio		1.75				
No. of strands		34				
Cable width		8.3		mm		
Core thickness (stainless steel)		25		μm		
B _{nom (} 70-430 MeV/u)		1.11 - 3.0	I	Т		
G _{nom} (430 MeV/u)		3.5		T/m		
I _{nom}		796 – 2144	1	А		
dB/dt		0.10				
Margin at 4.7/6 K						
Aperture		mm				
Yoke ID/OD		~130 / 320)	mm		
Bending angle	22.5°	30°	45°			
Magnetic length	0.87	1.16	1.74	m		
Stored energy	23	31	46	kJ		
Self inductance	10.1	13.5	20.2	mH		
Coil length	1.0	1.0 1.3 1.88		m		
Total length	1.15	1.15 1.45 2.05				
Approx. mass	560	710	1020	kg		
Coil sagitta (R2.207 m)	25.7	42.3	86.5	mm		




Electro-magnetic Optimization





Tracking parallel 5 x 5 mm 430 MeV/u ¹²C⁶⁺ Beam

Defocusing and Focusing Configurations (30° Magnet)

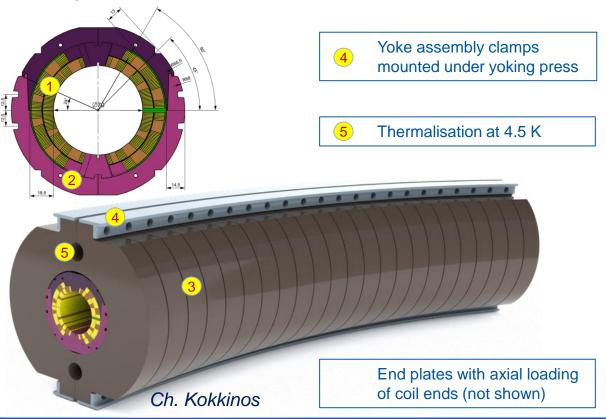
DF

	Integral at R20 (Opera-3D)								
	Straight(DF)	Curved(DF)	Curved (F)						
B1 (Tm)	-3.46	-3.46	-3.46						
b2 (unit)	-318.2	-437.2	236.1						
b3 (unit)	3.1	6.4	1.9						
b4 (unit)	-1.7	-2.2	2.5						
b5 (unit)	2.8	3.6	3.5						
b6 (unit)	-0.3	-2.7	2.6						
b7 (unit)	0.5	1.8	1.6						
b8 (unit)	-4.4	-5.2	5.1						
b9 (unit)	1.6	2.1	2.1						
b10 (unit)	0.3	0.3	-0.3						
b11 (unit)	0.2	-0.1	-0.1						

Quadrupole: 318.2 units = 5.5 T/m m or G = 4.76 T/m 437.2 units = 7.6 T/m m or G = 6.55 T/m 236.1 units = 4.1 T/m m or G = 3.53 T/m $L_{mag} = 1.155$ m

Field calculated from line integrals along toroidal/cylindrical surface

This is the configuration for the gantry


Mikko Karppinen

Mechanical Concept

Epoxy-impregnated 2-layer coils with inter-layer splice, wound with cored 34-strand 8.3 mm Nb-Ti cable with braided glass insulation

Stiff austenitic steel collars with 0.15..0.2 mm thick spacers on one side to follow the coil curvature

Horizontally split laminated iron yoke made of 1-mm-thick Si-steel with b-staged resin coating. Yoke sectors machined out of glued lamination stacks.

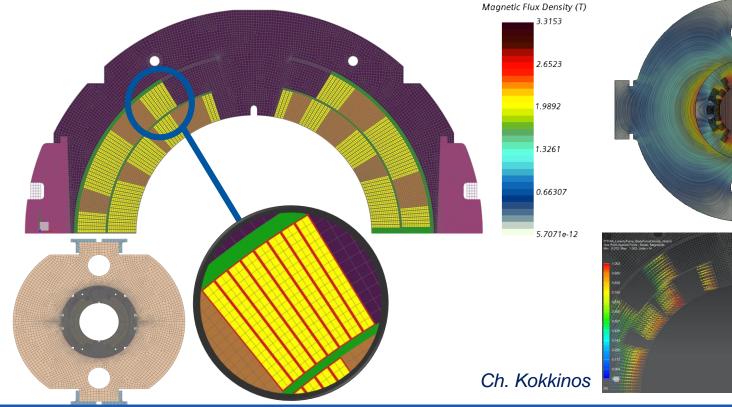
(1)

2

3

Magnet assembly

......



Mikko Karppinen

MT-27 18 November 2021

FE-model & EM-Forces

Mapping of Lorentz Forces

Mikko Karppinen

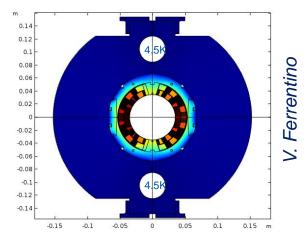
Coil Von-Mises stress evolution

Ch. Kokkinos

The optimised FE-model meets the design goals

Transient analysis: STEAM-SIGMA/Comsol

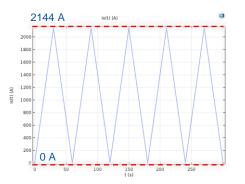
Goals:

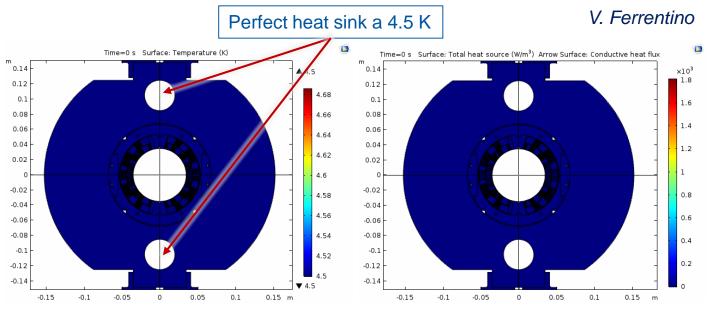

- Understand T-gradient between the coils and thermalisation point
- Verification of the operational margins
- Estimate the required cooling power

Transient losses:

- Inter-filament coupling loss (IFCL) and Inter-strand coupling loss (ISCL) and eddy current loss in wedges from transient analysis
- Persistent current loss (PCL) from ROXIE as constant heat source
- Conductor effective transverse resistivity (fRho_{eff}) between filamens used as variable for scaling the losses

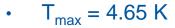
• FE-model:

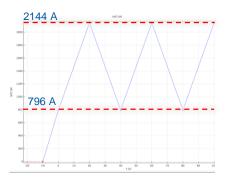

- Conservative thermal resistance at collar-yoke interface based on contact
 pressure from structural analysis
- Detailed non-linear material properties
- Perfect 4.5 K heat sink applied on yoke holes
- "Reference case (0..3 T)" and "Expected operational case (1..3 T)" were analysed in addition to a highly pessimistic "Worst case (0..3 T)" scenario

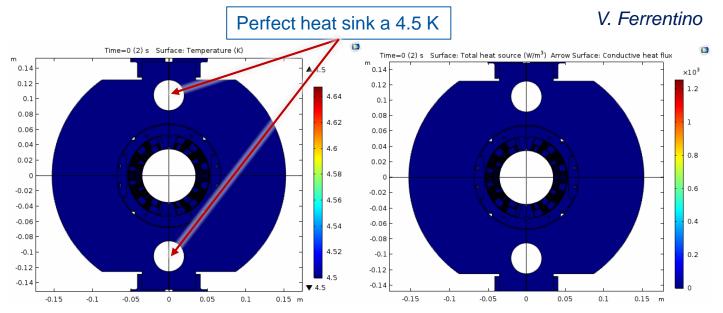


Transient analysis: Reference case (0...3T)

- Quasi-steady state reached after one cycle of 60 s
- $T_{max} = 4.69 \text{ K}$

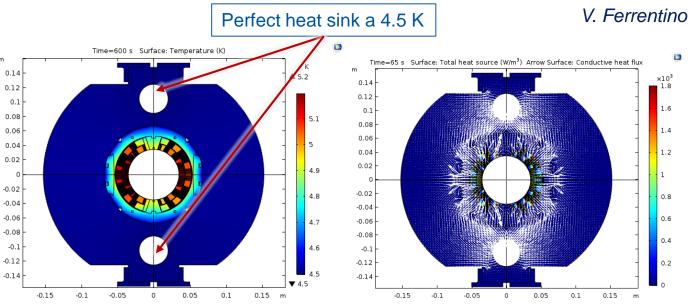



Case	Field range (T)	dB/dt(T/s)	Cycle(s)	$fRho_{eff}$	PCL (J/m)	IFCL (J/m)	ISCL(J/m)	Wedges(J/m)	L_{AVG} (W/m)	dT _{max} (mK)
Reference	03	0.1	60	1	26.4	8.5	0.5	9.0	0.74	190



Transient analysis: Operational case (1..3T)

 Quasi-steady state reached after two cycles of 40 s



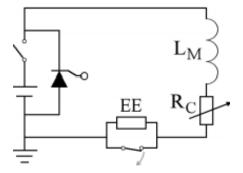
Case	Field range	• (T)	dB/dt(T/s)	Cycle(s)	fRho _{eff}	PCL (J/m)	IFCL (J/m)	ISCL(J/m)	Wedges(J/m)	L _{AVG} (W/m)	dT _{max} (mK)
Expected operation	1 3		0.1	40	1	14.1	4.5	0.3	4.7	0.59	150
Reference	03		0.1	60	1	26.4	8.5	0.5	9.0	0.74	190

Transient analysis: "Worst" case

- Thermal conductivity at Coil-Collar / 4
- IFCL x 3
- PCL x 4 (very pessimistic)
- Quasi-steady state after two cycles of 60 s
- $T_{max} = 5.2 \text{ K}$
- G10 wedges instead of
 Cu make it worse

Case	Field range (T)	dB/dt(T/s)	Cycle(s)	$fRho_{eff}$	PCL (J/m)	IFCL (J/m)	ISCL(J/m)	Wedges (J/m)	L _{AVG} (W/m)	dT _{max} (mK)
Expected operation	1 3	0.1	40	1	14.1	4.5	0.3	4.7	0.59	150
Reference	03	0.1	60	1	26.4	8.5	0.5	9.0	0.74	190
Worst (Cu-wedges)	03	0.1	60	0.33	105.6	25.6	0.5	9.0	2.34	700
Worst (G10-wedges)	03	0.1	60	0.33	105.6	25.6	0.5	0.0	2.19	800

Total cooling power for transient losses


- Scaling from Discorap^{(*} gives a total of roughly 0.51 W/m per cycle for eddy current (collars, collaring keys, iron) and hysteresis (iron) losses in the cold mass for the conservative power cycle of the reference case
- For the reference case (0 .. 3 T) the coil loss is 0.74 W/m and the total loss below 1.25 W/m per 60 s cycle (or below 2.2 W for 45° magnet)
- For the expected operation (1 .. 3 T) the coil loss is 0.65 W/m and the total loss below 1 W/m per 40 s cycle (or 1.6 W for 45° magnet)

*)INFN-13-06/GE 22 th May 2013, TECHNICAL DESIGN REPORT OF THE SUPERCONDUCTING DIPOLE FOR FAIR SIS300

Quench protection system

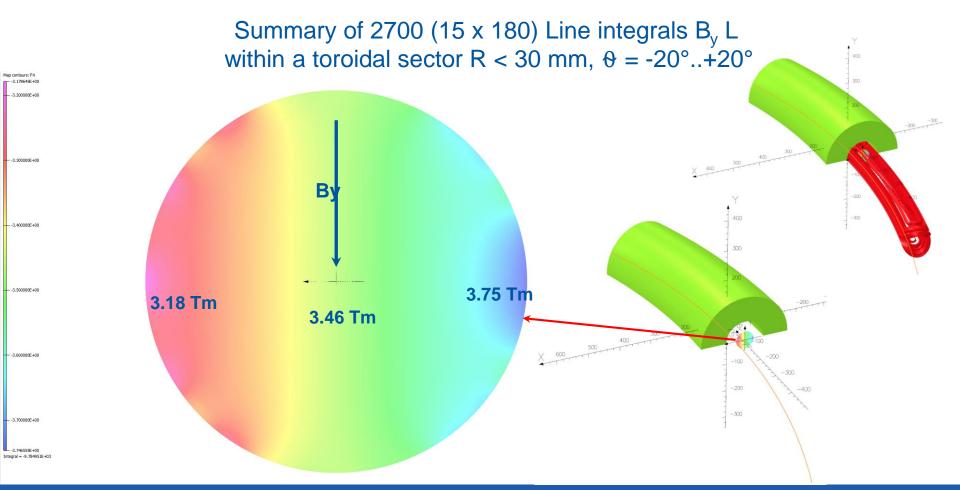
- The quench protection analysis has been performed with STEAM – LEDET tool for 3 x 45°magnet in series
- Goals:
 - Peak hot-spot temperature < 300K
 - Peak voltage < 1 kV
- An energy extraction system based on 90 m Ω R_{EE}
 - Quench detection and validation = (5 + 10) ms = 15 ms
 - Energy extraction switch opening = 5 ms
 - T_{max} < 70 K
 - U_{max} < 200 V

E. Ravaioli & V. Ferrentino

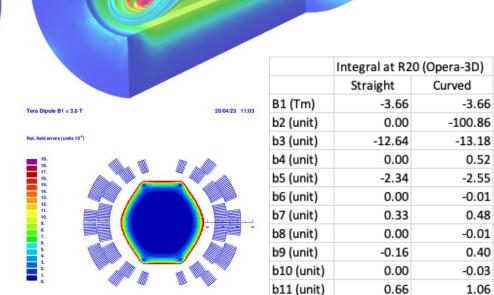
Present Design Status

- Conceptual design:
 - Electro-magnetic design well understood, design & analysis tools developed
 - Structural optimization and sensitiviy analysis were carried out taking into account realistic manufacturing tolerances
 - Thermal modelling of transient heat losses completed with very encouraging results
 - Quench protection study based on energy extraction completed
 - Link to beam dynamics in terms of field quality definition being studied
- Engineering design (next step):
 - Final design optimisation to meet all design requirements
 - Integration of the cooling features in the cold mass and associated heat transfer study
 - Manufacturing design of magnet components and tooling

Summary


- The proposed combined function magnet, based on the technologies extensively developed for the LHC project, meets the present specification and includes several gantry-specific features that would be validated by a demonstrator magnet
- Conservative parameters chosen to ensure comfortable operational margins and to maximise the reliability of the magnets
- Transient losses to be extracted from the cold mass by the cryogenics are less than 2 W/m
- 3 x 45° magnets in series can be protected with simple energy extraction
- The goal is to test the demonstrator magnet in He-bath by 2023-2024
- Construction and test as a complete system including the features for conduction cooling based on cryocoolers possibly at a later stage depending on the available resources
- The lessons from the 30° demonstrator magnet will be implemented in the design of the 45° prototype magnet targeting the final gantry specification

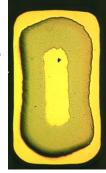
Complementary slides



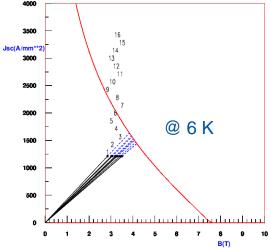
"Pure Dipole"

Perfect agreement of $L_{mag} = 1.22$ m and B1 = 3.66 Tm **Curvature** gives -100.9 units of b2 (G = 1.85 T/m) and about 0.5 units of b3

Field calculated from line integrals along toroidal/cylindrical surface



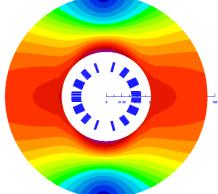
Mikko Karppinen


Low Current MBCFD Main Design Features

- 8-way ribbon made with LHC wire #4 (1.53x0.85 metal, 60 µm PVA)
- · Wires in the cable connected in series on the end plate
- Nominal current 584 A
- Single layer epoxy impregnated coil
- $B_{nom} = 3 T$
- $G_{nom} = 2 \text{ T/m}$ (in focussing configuration)
- Margin at 4.5 K / 6 K = 40 % / 18 %
- Inductance 144 mH/m (10 X 2-layer design)
- Collared coil and laminated yoke (similar to 2-layer design)

HARMONIC ANALYSI MAIN HARMONIC REFERENCE RADIUS X-POSITION OF TH Y-POSITION OF TH MEASUREMENT TYPE ERROR OF HARMONI SUM (Br(p) - SUM	(mm) E HARMONIC E HARMONIC C ANALYSIS	C COIL (mm) C COIL (mm) S OF Br	ALL	FIELD CO	0.0000 0.0000 NTRIBUTIONS
MAIN FIELD (T) . MAGNET STRENGTH					
NORMAL RELATIVE b 1: 10000.0000 b 4: -0.0007 b 7: 0.0000 b10: -0.4340 b13: 0.6724 b16: -0.0988 b19: -0.0067	0 b 2: 4 b 5: 7 b 8: 9 b11: 7 b14: 0 b17:	5 (1.D-4): -233.00223 0.00006 0.00003 -0.67807 0.09176 -0.03538 0.00027	b 3: b 6: b 9: b12: b15: b18: b	0.0019 0.0169 0.0000 0.7089 0.22310 0.00540	2 5 5

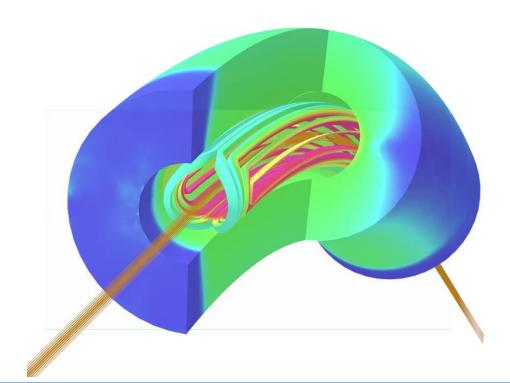
|B| (T)

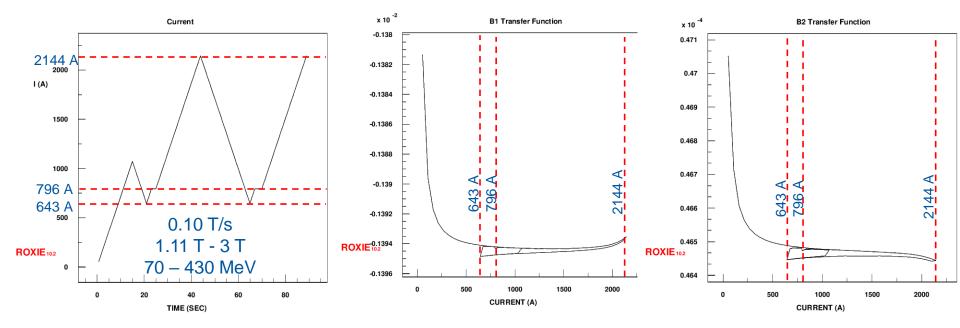

3.507

3.324 3.140 2.957 2.774 2.590 2.407 2.223 2.040 1.857

1.673

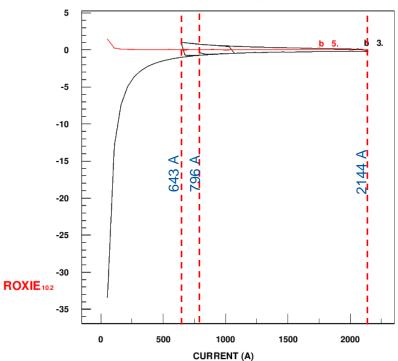
Low current MBCFD




Low current MBCFD (30° Design)

	Curved (F)
B1 (Tm)	3.45
b2 (unit)	134.1
b3 (unit)	-7.4
b4 (unit)	0.4
b5 (unit)	7.5
b6 (unit)	0.8
b7 (unit)	0.6
b8 (unit)	0.5
b9 (unit)	-0.7
b10 (unit)	-0.2
b11 (unit)	0.0
B2(T/m m)	2.32
Lmag(m)	1.154
G(T/m)	2.01

Transient Effects: TF of Main Components



_{set} of 640 A reduces transient coil losses by about 40 % wrt 0-current.

MT-27 18 November 202

Transient Effects : b3 & b5


b3 and b5 variation

Structural Analysis

Design goals:

- Static and mechanically rigid structure
- Coil stress <150 MPa at all times
- No unloading at the poles
- Smooth stress gradients in coils
- Maximal contact area on collar-yoke interface for minimal thermal resistance
- Minimal distortion of circular coil shape
- Assembly parameters achievable with practical tolerances on parts and sub-assemblies
- Easy integration of cooling system

`	Material	Mechanical Properties					Therr	Thermal Properties (Tref=293K, Top=4.5K)				EM Properties (Tref=293K) (magn.length1.15m)			
			Pa]	Pn	Ω.	Stress lim	it [MPa]	k @ 4.5K	Ср @ 4.5К	а		Electrical Conductivity @ 4.5 K	Electrical Relative permittivity	Magnetic Relative Permeability	density
		@ 300K	@ 4.5K	@ 300K	@ 4.5K	@ 300K	@ 4.5K	[W/m*K]	[J/kg*K]	К ⁻¹ (293К -> 4.5К)	mm/m	S/m			Kg/m3
Outer Shell Collars Poles Keys	Austenitic Steel 316LN	191	210.1	0.28	0.28	350	1050	0.32	22190	9.70537e ⁻⁶	2.8	1.827*e6	1	1.02	
Yoke	Silicone Steel	<mark>204</mark>	<mark>224.4</mark>	<mark>0.28</mark>	<mark>0.28</mark>	<mark>230</mark>	<mark>720</mark>	<mark>35 (@293K)</mark>	<mark>0.40</mark>	<mark>6.93241e⁻⁶</mark>	2	<mark>1.12*e7</mark>	1	BH-Curve (EBG1200-100A)	
Insulation	G10	25	27.5	0.2	0.2	150	150	0.079	5300	8.66551e ⁻⁶	2.5	10	1	1	1
Wedges	Copper	100	110	0.3	0.3	250	250	715 (RRR=100)	1080	1.16811e ⁻⁵	3.37	3.11*e9	1	1	
Coil	NbTi	15	20	0.3	0.3	150	150	0.123	5740	1.7e ⁻⁵	4.9	58e ⁶ (perfect conductor)	1	1	
NOTES:		L	Ref: CE	RN, FCC, <u>NbTi</u> f	rom MCXB/M	ICQX		LRe	f: Sigma	Ref: CERN FCC, NbTi	from MCXB/MCQX	Ref: Sigma, SIEMENS		Ref: CERN	

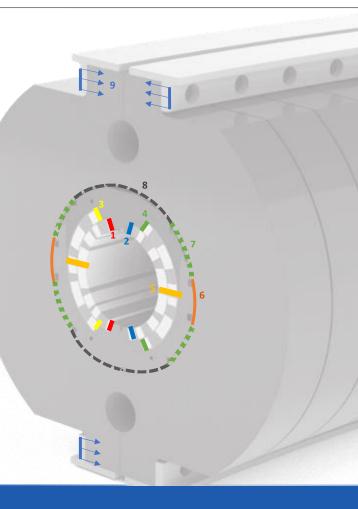
• Electrical permittivity (ε), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material.

• Relative permittivity εr is the ratio of the absolute permittivity ε and the vacuum permittivity $\varepsilon 0$ [$\varepsilon r = \varepsilon/\varepsilon 0$].

Electrical resistivity ρ [Ω·m] and its inverse, electrical conductivity, is a fundamental property of a material that quantifies how strongly it resists or conducts electric current. A low resistivity indicates a material that readily allows electric current. Electrical conductivity σ [S/m] represents a material's ability to conduct electric current.

- Magnetic Permeability (μ) [H/m]: the measure of the resistance of a material against the formation of a magnetic field. Hence, it is the degree of magnetization that a material obtains in response to an applied magnetic field.
- <u>Magnetic constant</u> or the permeability of free space μ₀, is a measure of the amount of resistance encountered when forming a magnetic field in <u>vacuum</u>, μ₀ = 4π × 10⁻⁷ H/m ≈ 12.57×10⁻⁷ H/m.
- Relative permeability, denoted by the symbol μr is the ratio of the permeability of a specific medium to the permeability of free space μ0: μr = μ / μ0

Ch. Kokkinos

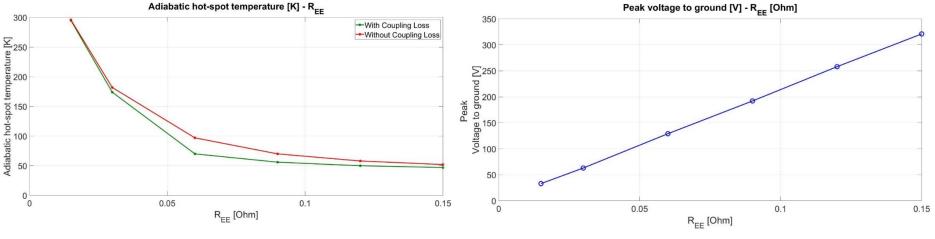

<u>Assembly Parameters</u>

Assembly parameters used for the results presented below:

Shimming Interface	<u>Shim #</u>	Direction	Interference [mm]
Coil Pole Shim – Inner Layer - LEFT	1	Azimuthal	0.00
Coil Pole Shim – Inner Layer - RIGHT	2	Azimuthal	0.00
Coil Pole Shim – Outer Layer - LEFT	3	Azimuthal	0.00
Coil Pole Shim – Outer Layer - RIGHT	4	Azimuthal	0.00
Coil Midplane	5	Vertical	0.04 (total)
Collar – Yoke [± (0° - 20°)]	6	Radial	0.1
Collar Yoke [± (20° - 45°)]	7	Radial	0.06
Collar Yoke [± (45° - 90°)]	8	Radial	0.05

9

Vertical

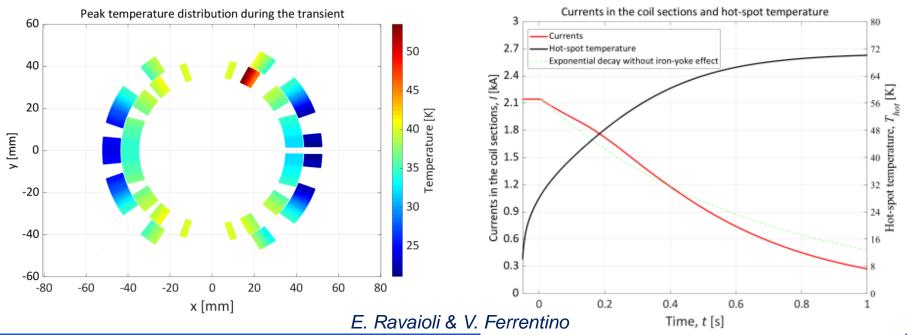

Bolt Preload

Ch. Kokkinos

0.4 (per side)

Quench protection: EE-Resistance

- $R_{EE} = 90m\Omega$ comfortably meets the goals
- $T_{max}^{--} = 70 \text{ K}$
- U_{max} = 200 V



E. Ravaioli & V. Ferrentino

Quench protection: Hot-spot temperature

- $R_{EE} = 90 \text{ m}\Omega$
- T_{max} < 75 K (without IFCL, conservative)

