TUE-OR1-602-01

Recent progress of RE-based high temperature superconductors at Fujikura

Masanori Daibo, Satoru Hanyu, Shinji Fujita, Yasuhiro lijima

Fujikura Ltd., Chiba 285-8550, JAPAN E-mail: masanori.daibo@jp.fujikura.com

Introduction

- Recent progress of RE-based HTS tapes at Fujikura
- Mechanical properties of RE-based HTS tapes

Summary

Recent shipment of Fujikura's RE-based HTS tapes

■ 5T cryocooled magnet by Fujikura(2012) ■ NEDO MRI program (2016-2018)

110 cm

Fujikura

TELOS Project (2016-2019)

Presented at EUCAS 2019

Airbus, KIT, Siemens

https://ir.bruker.com/press-releases/press-release-details/2019/Bruker-Announces-Worlds-First-12-GHz-High-Resolution-Protein-NMR-Data/default.aspx

Fujikura's RE-based HTS tape (IBAD / PLD)

Typical Specifications of RE-based HTS tape at Fujikura

Droducto	Width	Thickness	Substrate	Stabilizer	Critical Current [A]	
Products	[mm]	[mm]	[µm]	[µm]	77K, S.F.	20K, 5T ^{*3}
FYSC-SCH04	4	0.13	75	20	≥ 165	368
FYSC-SCH12	12	0.13	75	20	≥ 550	1,104
FYSC-S12 ^{*1}	12	0.08	75	—	≥ 550	_
FESC-SCH02 *2	2	0.11	50	20	TBD	(257)
FESC-SCH03 ^{*2}	3	0.11	50	20	≥ 63	497
FESC-SCH04 *2	4	0.11	50	20	≥ 85	663
FESC-SCH12 *2	12	0.11	50	20	≥ 250	1,990
FESC-S12 *1,2	12	0.06	50	_	≥ 250	1,990

*1 Non-copper stabilizer specification is available in only 12mm-wide for current lead or low thermal conducting applications.

*2 Artificial pinning specification is mainly for use in magnet applications at low temperature and high magnetic field.

*3 Ic@20K, 5T is a reference value and no guarantee of the actual performance.

*4 If requested, an option customizing copper plating thickness is also available. (e.g., 5µm, 10µm or 40µm)

FYSC(Non-AP) is recommendable for use at relatively higher temperature.

FESC(AP) is recommendable for use in magnet applications at lower temp. and higher field.

Example data of longitudinal I_c distribution of 4mm-wide tape

Example data of longitudinal I_c distribution of 3mm-wide tape

3 mm-wide tape: FESC-SCH03

Example data of longitudinal I_c distribution of 2mm-wide tape

2 mm-wide tape: FESC-SCH02

4-terminal method current conduction measurement at every 4.7 m

In-field *I*c Performance – FESC type – (AP)

AP specification is recommendable for use in magnet applications at lower temperature and higher magnetic field.

MT27, Fukuoka, Japan, November, 2021

Fujikura

difference of Max. and Min. in-field Ic at 30K 1T \leq 5%

Evaluation of lot-to-lot variation of in-field lc

Evaluation results between Ic at 77K, self-field and in-field Ic, compared with conventional(w/o AP) tapes

Fujikura's tapes show very good correlation

♦ measured at Fujikura, and exploited values with Ic
□ in-field Ic measured at Tohoku university

Evaluation of lot-to-lot variation of in-field lc

Fujikura's tapes perform very good reproducibility

Tensile Stress evaluation

MT27, Fukuoka, Japan, November, 2021

0

13

Evaluation of tensile properties of divided 4 mm-wide

Evaluation of failure probability of delamination

Heat cycle test of small epoxy-impregnated coils

Sample : FESC-SCH04 (4mm-w, 50µm-thick substrate + 20µm-thick copper), Length :11m/coil Inner diameter:30mm, Outer diameter:54mm, OD/ID=1.8, Epoxy-impregnation Delamination stress : 9.6 MPa(calculated), RT ⇔ LN2

Summary

- Strengths of Fujikura's RE-based HTS tapes
 - Fujikura has focused on manufacturing uniform RE-based HTS tapes
 - •We recently start to ship 2mm and 3mm-wide tapes
 - •We have investigated various mechanical properties of the RE-based HTS tapes for the applications.
 - \rightarrow THU-Or4-704-04 S. Muto et. al.,

Quench protection study of a large scale REBCO magnet with additional copper tapes

Thank you for your attention !

ask-sc@jp.fujikura.com

https://www.linkedin.com/company/fujikura-superconductor/