



JT-60SA TFC02 complementary quench tests in CTF: thermohydraulical analysis and smooth quench criticality

- (helium,conductor, jacket)
- Magnetic field profiles calculated with TRAPS code
- \triangleright Friction factor correlations from experimental measurements
- Primary quench detection features: \geq voltage threshold $V_{detect} = 0.1$ V and holding time $\tau_h = 0.1$ s or 0.5 s

Vq,analytical	16.1 m/s	12.8 m/s	3.6 m/s	0.6 m/s
$\tau_{da} = \tau_{h+} \tau_p$	0.61 s	0.92 s	2.12 s	4.18 s
$T_{He,max,Exp}$	26.3 K	36.9 K	14.9 K	10.5 K
T _{He,max,SM}	27.7 K	38.7 K	17.4 K	14.3 K
Tcond, max, SM	32.6 K	38.9 K	17.5 K	16.6 K
$T_{cond,max,analitycal}$	44.25 K	40.8 K	19.1 K	12.4 K

32.1 m/s

22.1 m/s

25.6 m/s

22.7 m/s

Conclusion

₩J25

Vq,NLmax,Exp

Numerical model validation:

Large scale model of one JT-60SA TFC with its cryodistribution in CTF allowed simulating the quench transient phenomenon.

3.9 m/s

3.2 m/s

0.7 m/s

1.6 m/s

Low quench propagation

velocities

Quench propagation time τ_p

for reaching V_{detect} increases

- mainly affected by τ_h at I_{nom}

- lower at reduced currents

CICC $T_{cond,max}$ are:

even if τ_p is larger

Simulation results were compared to experimental measurements of TFC02 complementary quench tests and were found in rather good agreement.

Main results:

- Delayed detection at nominal current significantly increases the Joule energy dissipated before the fast current discharge and thus induces large CICC temperature rise.
- Smooth quench at reduced current are characterized by slower quench propagation velocities, inducing not fully quenched coil, lower temperature and pressure rises.