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INTRODUCTION

In order to explore unknown regions of the high energy physics, CERN will need a new generation of particle
accelerators that will improve the performance of the LHC bringing up the center-of-mass energy from 14 TeV up
to 100 TeV, along a 100 km ring, with 16 T bending dipoles. The worldwide project led by CERN goes under the
name of Future Circular Collider (FCC). The cosf option for the main dipole has been designed by the Italian
Institute for Nuclear Physics (INFN). Considering the extreme fields that these dipoles will have to produce it is
needed a state-of-the-art Nb,Sn cable with its high critical field, but on the other hand it shows a pretty brittle
behavior after the heat treatment that generates the superconducting intermetallic compound.

2D MECHANICAL ANALYSIS

The mechanical structure of the Falcon Dipole has to be designed in such a way to withstand the huge Lorentz forces which arise once the magnet is
energized. These forces may be responsible of movements of the cables that could generate heating, due to friction, eventually leading to a quench.

To give the proper pre-load to the winding the B&K technique it has been chosen for the Falcon Dipole. This technique supply the pre-stress to the coils
in two steps: one at room temperature through the insertion of SS interference keys, using water-pressurized bladders, that transfer to the coils about
half of the needed pre-stress. The other one is at 1.9 K and it exploits the higher thermal contraction coefficient of the external Al alloy shell that shrinks
more than the inner components of the magnet, reaching gradually the intended pre-load. The goals of the optimization of the mechanical design are:
keeping the winding and the Ti pole in compression during the energization and ensuring that all the materials involved stay within their stress limit
during each step of the analysis. While the horizontal key interference is set to 0.1 mm, the vertical one increases with the magnitude of the magnetic field,

following the increase of the Lorentz forces. It has been set to 0.35 mm for the 12 T case and 0.6 mm for the 14 T one.

Main characteristics of the dipole magnet at the fieldsof 12 Tand 14 T

Due to the mechanical issues, it is fundamental to develop a strong R&D strategy, in order to achieve the needed
knowledge to manage the production of such innovative magnets. These R&D activities will include the
Implementation of a cutting edge concept for the mechanical structure surrounding a cosé@ dipole, i.e. the B&K
technology, nowadays used only for quadrupoles or R&D block-type magnets. The cosf configuration has been
elected as the baseline design in the Conceptual Design Report of the FCC project. It has been signed an
agreement between CERN and INFN which gave rise to an intermediate project called Falcon Dipole. The aim of
the FalconD is to design and develop a single aperture cosf 1.5 m long model with a target magnetic field of 12 T
In the bore and an ultimate field of 14 T.

ABSTRACT

The future of the particle accelerators points to a new CERN’s circular collider
with an order of magnitude increase in the center-of-mass energy compared to
the Large Hadron Collider (LHC). To achieve this goal a 100 km tunnel and a
new generation of double aperture magnets capable of generating a 76 T
magnetic field in a 50 mm bore will be required. To manage this challenging task
a roadmap was planned in the development of accelerator-grade Nb,;Sn
magnets under a CERN-INFN agreement. The first of these steps will be the
construction of a short, single aperture cosé dipole, with a target magnetic field
of 12 T and an ultimate field of 74 T called Falcon Dipole (Future Accelerator
post-LHC Cosf Optimized Nb,;Sn). This contribution presents 2D and 3D finite
element analysis able to describe all the constructive steps that meet the
requirements imposed by the project to ensure the correct operation of this
magnet. To cope with the intense magnetic forces that are generated in the
magnet during operation, a novel mechanical structure has been adopted, the
so-called “bladder & key” (B&K), that has never been used in cos@ dipoles and
needs to be validated.

3D MECHANICAL ANALYSIS
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The main goals of the 3D analysis are to get confirmations of the 2D analysis results and to explore the longitudinal behavior of the magnet system. Due
to the intrinsic complexity of the 3D design, the finite element model necessarily contains several simplifications, among which: the coil is divided into
straight part and coil end and all mechanically negligible shapes are removed. The longitudinal pre-stress is provided by eight tie-rods, four of which are
30 mm thick acting on the SS pad , while the other four are 36 mm in diameter inserted in the iron yoke. Basically, the idea is that the longitudinal pre-load
should limit the coil end movements between cool down and powering within a safe limit. It is required that the pre-load is large enough to ensure that
the coil end is held under compression during powering. From the simulations it results that it is sufficient applying a pre-load up to 25% of the longitudinal
Lorentz force for the 72 T configuration. On the other hand, for the 74 T configuration is necessary to provide a pre-load of 50% of the Lorentz force.

Average Young moduli, shear moduli and thermal contraction coefficients of
coil’s straight part and coil ends at 293 K and (at 1.9 K)
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CONCLUSION

The mechanical structure of FalconD has been optimized in order to properly work both at the target central
magnetic field of 12 T and at the ultimate bore field of 14 T. The mechanical structure has been designed using
the B&K concept, which supply the proper pre-stress to counterbalance the azimuthal Lorentz forces after
energization with excellent results at 12 T and almost acceptable results at 14 T for what concern the stress
management of the straight part of the Falcon Dipole.

In order to cope with the longitudinal Lorentz forces it has been designed an effective pre-loading system
consisting of eight tie-rods. From the 3D simulations turns out that supplying 25% of the longitudinal Lorentz
forces to the 12 T configuration and 50% to the 14 T one is sufficient to guarantee the correct operation of the
magnet. Moreover it has been possible to validate both the 2D and 3D models through a cross check of the
mechanical results.



