Contribution ID: 511 Contribution code: WED-PO2-613-09

Type: Poster

In-field evaluation of REBCO superconducting joint

Wednesday, 17 November 2021 10:30 (20 minutes)

The superconducting joint is one of key technologies to evolve high temperature superconducting (HTS) conductors and their applications. Various joint techniques have been proposed in these years [1]. To evaluate developed joint efficiently, we developed a resistance evaluation system for superconducting joints [2]. The system consists of a superconductor sample with a joint, a copper coil to inject (induce) current to the sample, and a superconducting magnet for external fields applied to the joint. Using this system, joint resistance (R_j) ranging 10^{-15} - 10^{-7} Ω can be quantitatively evaluated as a function of injected current (I_{in}) magnitude, temperature, and external magnetic field. In addition, I_c and T_c of the joint can be evaluated. In this paper, we report the evaluation results of the REBCO superconducting joint [3]. At 4.2 K without external field, R_j stayed $\tilde{10}^{-14}$ Ω at I_{in} up to $\tilde{10}^{-300}$ A. This indicates that the I_c of the joint is sufficiently larger than 300 A. At 77 K, I_{in} of $\tilde{15}^{-150}$ A rapidly decreased to $\tilde{11}^{-160}$ A and evaluated R_j was $\tilde{10}^{-120}$ Ω . This higher R_j is considered to be due to a high load factor of $\tilde{100}^{-100}$ at the joint. R_j at 4.2 K showed almost no dependence on external field ranging $0 \leq B \leq 3$ T. Even at 77 K and 3 T, the junction carried I_c of $\tilde{17}^{-100}$ A and R_j was $\tilde{10}^{-120}$ Ω . This work is based on results obtained from a project commissioned by JST-Mirai Program Grant Number JPMJMI17A2, Japan.

- [1] G. D. Brittles et al., Supercond. Sci. Technol. 28, 093001 (2015).
- [2] K. Kobayashi et al., IEEE Trans. Appl. Supercond. 30, 9000204 (2020).
- [3] K. Ohki et al., Supercond. Sci. Technol. 30, 115017 (2017).

Primary authors: KOBAYASHI, Kensuke (National Institute for Materials Science); Dr OHKI, Kotaro (Sumitomo Electric Industries, Ltd.); Dr NAGAISHI, Tatsuoki (Sumitomo Electric Industries, Ltd.); Dr UCHIDA, Akira (National Institute for Materials Science); NISHIJIMA, Gen (National Institute for Materials Science); KITAGUCHI, Hitoshi (National Institute for Materials Science (NIMS))

Presenter: KOBAYASHI, Kensuke (National Institute for Materials Science)

Session Classification: WED-PO2-613 Joints between Superconductors