

27th International Conference on Magnet Technology (MT27) *Fukuoka, Japan / 2021*

Quench Transient Simulation in a Self-Protecting Magnet with a 3D Finite-Difference Scheme

<u>E. Ravaioli</u>¹, O. Tranum Arnegaard^{1,2}, A. Verweij¹, and M. Wozniak¹ ¹CERN, Geneva, CH. ²Norwegian University of Science and Technology, Trondheim, NO.

19 November 2021

1D	Longitudinal
----	--------------

Jan T	1D	Longitudinal
* >	2D	Transversal

3D	Longitudinal
	and transversal

LHC quadrupole magnet [MQSX]		
Superconductor	Nb-Ti	
Operating current	550 A	
Operating temperature	1.9 K	
Peak field on the conductor	3.5 T	
Self-inductance	14 mH	
Magnetic length	223 mm	
Number of turns	384	

2D magnetic field was calculated with the ROXIE program

Main assumptions

- \rightarrow Simplified coil ends geometry: simple arcs
- \rightarrow 2D magnetic field extended to the full turn: no 3D field
- ✓ Good assumptions for electro-thermal quench simulations
- x Not good for other transients (in particular mechanical)

Thermal balance equation solved in 3D

- ✓ Thermal diffusion in 3D
- ✓ Quench state and ohmic loss
- ✓ Inter-Filament Coupling Loss (IFCL)

Effect of quench location

3D simulation compared to 2D+1D

0.15 0.2 0.25

Time [s]

3D, w/ IFCL: min/m. 3D, w/ IFCL: median v. 2D+1D, w/ IFCL: min/mi. 2D+1D, w/ IFCL: median v. 3D, wo/ IFCL: median valu 2D+1D, wo/ IFCL: median valu 2D+1D, wo/ IFCL: min/max

Effect of Inter-Filament Coupling Loss (IFCL)

Analyzed quench locations

Different quench locations

- \rightarrow Different magnetic field
- \rightarrow Different longitudinal locations
- \rightarrow Different number of adjacent turns

11

Simulated current discharge for different quench locations

Comparison to current discharge measured during LHC operation

→ 3D quench simulation reproduces very well the experimental curve

Simulated peak coil temperature for different quench locations

→ Peak coil temperature below 100 K (self-protecting magnet)

→ Uncertainty in quench location results in ~25 K uncertainty

Current discharge simulated with 3D and 2D+1D models

→ 2D+1D model qualitatively reproduces the transient → 3D model matches measurements more accurately

Simulated 3D temperature distribution during the discharge

- → Animations provide useful insights in the quench behavior
- → Quench-back is caused by inter-filament coupling loss (IFCL)

Inter-Filament Coupling Loss (IFCL)

- → Caused by coupling currents between twisted superconducting filaments
- \rightarrow IFCL is roughly proportional to $(dB/dt)^2$

Current discharge simulated with and without IFCL

Coil resistance simulated with and without IFCL

 → At t=50 ms, the current is forced through an 80 mΩ crowbar
→ Quench-back soon occurs and

rapidly increases the coil resistance

Peak coil temperature simulated with and without IFCL

→ Neglecting IFCL the temperature is overestimated by ~30 K

→ For other magnets, the difference might be more critical

Main takeaways

Quench transient in a 3D full-scale magnet geometry successfully simulated

Excellent agreement with experimental results collected during LHC operation

The effect of quench location and inter-filament coupling loss are quantified

Simulation of the full transient requires <15 minutes

AB

BB

 \mathbf{CB}

0

CA

DA

BC

CC

0

DD

E. Ravaioli – Quench Transient Simulation in a Self-Protecting Magnet with a 3D Finite-Difference Scheme – MT27 – 2021/11/19

CERN

LEDET

All simulations presented today were performed with LEDET, a program that is part of the STEAM framework developed at CERN

All STEAM programs are available free of charge for the community DTEAM / Interested? Visit us $\rightarrow \underline{\text{https://espace.cern.ch/steam}}$ or Contact us $\rightarrow \underline{\text{steam-team@cern.ch}}$

Annex

Peak voltage to ground simulated with and without IFCL

Physics implemented

- Thermal diffusion in 3D
- Quench state and ohmic loss
- Inter-Filament Coupling Loss (IFCL)

Finite-Difference Method

- Thermal diffusion equation solved in 3D with a semi-implicit scheme
- Implicit scheme guarantees numerical convergence
- With an explicit scheme with 1 mm mesh size: <1 µs would be needed!

Method not fully implicit because

- Material properties from previous time step
- Ohmic loss from previous time step

Work is not over yet... We're constantly developing new features! If you have ideas, wishes & feedback, we're interested!

https://espace.cern.ch/steam/

steam-team@cern.ch

