STEAM Software Framework to Simulate Transients in Accelerator Magnets and Circuits

E. Ravaioli1, M. Wozniak1, D. Barthlott1,2, L. Bender1,3, L. Bortot4, D. Delkov1, M. Janitschke1,5, M. Maciejewski6, M. Mentink1, A.K. Pedersen1,7, O. Tranum Arnegard1,8, A.P. Verweij1

1CERN, Geneva, CH. 2KIT - Karlsruhe Institute of Technology, DE. 3University of Applied Sciences, DE. 4Technische Universität Darmstadt, DE. 5Technische Universität Berlin, DE. 6ETH Zürich, CH. 7Aarhus University, DK. 8Norwegian University of Science and Technology, Trondheim, NO.

STEAM (Simulation of Transient Effects in Accelerator Magnets) contains a suite of in-house developed programs used to model transients in superconducting magnets.

- **BBQ**: simulate 1D quench propagation in superconducting busbars
- **COSIM**: run cooperative simulations of models developed in different programs (and possibly by different people)
- **LEDET** [developed with LBNL, Berkeley, CA]: simulate electro-magnetic and thermal transients in accelerator magnets in 2D and 3D geometry
- **SIGMA**: automatically generate FE models of superconducting magnets
- **PROTECCT**: simulate quench transients in CCT-type magnets
- **SING**: automatically generate models of electrical circuits

The list of programs and applications is constantly evolving.

Supported software: COMSOL, LTSPICE, PSIM, PSPICE, QLASA

CERN, Geneva, CH.

KIT - Karlsruhe Institute of Technology, DE.

University of Applied Sciences, DE.

Technische Universität Darmstadt, DE.

Technische Universität Berlin, DE.

ETH Zürich, CH.

Aarhus University, DK.

Norwegian University of Science and Technology, Trondheim, NO.

Acknowledgments: The authors are grateful to B. Auchmann, with the Paul Scherrer Institute, CH, for co-leading the STEAM project in its early years, and I. Cortes Garcia and S. Schöps, with the Technische Universität Darmstadt, DE, for their help in developing the cooperative-simulation framework.