Formulation for the reluctance of the wide air gap

No magnetic flux spread in the air gap,

➡the reluctance can be calculated using air gap space volume.

Magnetic flux will spread in the wide air gap, →the reluctance calculation becomes difficult.

A simple equivalent model of the electromagnet

Magnetic flus distribution of the finite solenoid

Magnetic flux distribution Equivalent magnetic circuit Leakage Outside space $\phi_{\rm m}$ Φ magnetic flux, Part II of solenoid ϕ_l \mathcal{R}_{in} Inside space Mean Part I of solenoid magnetic flux \mathcal{R}_1 *NI* (Coil) \mathcal{R}_{out} Part II Self-inductance of the finite Assuming the leakage flux can be neglected solenoid can be calculated using the Nagaoka coefficient K_n $L = \frac{N^2}{\mathcal{P}_{in} + \mathcal{P}_{out}}$ $L = K_n \frac{\mu_0 S}{d} N^2 = K_n \frac{1}{\mathcal{R}_{in}} N^2 = \frac{N^2}{\mathcal{R}_{in} + \mathcal{R}_{out}}$ $\mathcal{R}_{out} = \frac{1 - K_n}{K_m} \mathcal{R}_{in}$

Magnetic Flux distribution in a Wide air gap

The magnetic flux are the same direction in part I and part II

Parallel connection
$$\checkmark$$
 $\frac{1}{\mathcal{R}_{air}} = \frac{1}{\mathcal{R}_{in}} + \frac{1}{\mathcal{R}_{out}}$
The reluctance of the wide air gap $\mathcal{R}_{air} = (1 - K_n)\mathcal{R}_{in} = (1 - K_n)\frac{d}{\mu_0 S}$

Self-inductance of electromagnet

$$\mathcal{R}_{air} = (1 - K_n) \frac{d}{\mu_0 S} \quad (5)$$

$$L = \frac{N^2}{\mathcal{R}_{core} + \mathcal{R}_{air}} \tag{6}$$

Cooling system design for real-scale electromagnet

Base on the thermal equilibrium equation :

$$U = (P_{C} + P_{m}) \cdot t_{op} = U_{c} + U_{m} + U_{r}$$
$$= \int_{T_{0}}^{T_{max}} m_{c} C_{c} + m_{m} C_{m} dT + \int_{T_{0}}^{T_{r}} Q t_{op} \rho_{r} C_{r} dT$$

 U_c : specific heat capacity of coil windings U_m : specific heat capacity of magnetic core U_r :endothermic energy of coolant

 $m_C C_C$: mass and specific heat capacity of coil winding $m_m C_m$: mass and specific heat capacity of magnetic core $T_{max} - T_o$: temp. rise of electromagnet

Q: coolant volumetric flow rate $\rho_r C_r$: liquid density and specific heat capacity of coolant $T_r - T_0$: temp. rise of coolant

$$Q = \frac{(P_{\rm C} + P_{\rm m})t_{\rm op} - (m_{\rm c}C_{\rm c} + m_{\rm m}C_{\rm m})(T_{\rm max} - T_{\rm 0})}{t_{\rm op}\rho C_{\rm r}(T_{\rm r} - T_{\rm 0})}$$

<u>3M Fluorinert Electronic Liquid FC-40</u>

It is necessary that use a low dielectric constant coolant to reduce the effect on the selfinductance of the electromagnet because the electromagnet is operated at high-frequency.

	FC-40 Flrorinert	Pure water
Boiling point	165 °C	100 °C
Liquid density	1870 kg/m ³	1000 kg/m ³
Liquid specific heat	1050 J/kg · K	4217 J/kg · K
Dielectric constant	1.9	80

URL:https://www.3mae.ae/3M/en_AE/p/d/v000586117/#variation1

