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After the optimization, the shield current amplitude decreased
from 500A to 1A and the three-phase imbalance ratio was
significantly reduced, which proved the correctness of the
optimization algorithm.
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Fig. 7 three-phase current 
waveforms of test

After optimization, the three-phase current imbalance
ratio of the cable drops from 10% to 1%, and the shield
current amplitude drops from 30% of the phase current to
less than 1%, and the transmission loss reduce 36%. The
current distribution test verified the correctness of the
mathematical model and the optimization algorithm of
current distribution.

Fig. 5 current waveform 
after optimization

Fig. 4 current waveform 
before optimization 

Fig. 6 experiment photo of tri-axial 
HTS cable

5 EXPERIMENTAL RESULTS

Tri-axial high temperature superconducting cable has the
advantages of compact structure, low loss, and nearly 2/3
reduction in the consumption of HTS tape. However, due to
the different radius of each phase conductor of the tri-axial
HTS cable, the symmetry of impedance components of each
phase is affected, resulting in the imbalance of the three-
phase current, which will reduce the transmission efficiency.
We propose a new type of two-section-cable Particle Swarm
Optimization to solve the problem of three-phase current
imbalance in tri-axial HTS cable. The algorithm divides the
cable C-phase conductor and the copper shield into two
segments with the same radius but different twist pitches and
twist directions, which increases the variable by one-half. By
changing the twist pitches and twist directions, considering
the thickness of the insulation, optimization of current
distribution is realized. Finally, we design a 10 kV/1.5 kA
tri-axial HTS cable. The results show that compared with
other optimization algorithms, the current imbalance ratio of
the superconducting cable is reduced from 10% to 1% after
the two- section-cable Particle Swarm Optimization. The
correctness of the mathematical model and the imbalance
optimization algorithm of tri-axial HTS cable is verified. The
optimization results provide important reference for the
design and experiment of tri-axial HTS cable.

Before
optimization

Imbalance ratio 10.4%
A phase current 1000Arms
B phase current 1230Arms
C phase current 1214Arms
AC loss 0.5908W/m
Shield current 347A

After
optimization

Imbalance ratio 1.2%
A phase current 1000Arms
B phase current 1004Arms
C phase current 1020Arms
AC loss 0.3768W/m
Shield current 0.6A

Table 1. Comparison of simulation results

Under the superconducting state, resistance R of the cable is
closed to zero, so the balance of three phase current depends
on the self-inductance, mutual inductance and capacitance of
the cable. The relationship between the voltages and currents
are described as follows.

𝐈𝐈 = [𝐑𝐑 + jw𝐋𝐋]−1+𝑗𝑗𝑗𝑗𝐂𝐂 𝐔𝐔 (1)

𝐈𝐈 =

𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐
𝐼𝐼𝑠𝑠

𝐔𝐔 =

𝑈𝑈𝑎𝑎
𝑈𝑈𝑏𝑏
𝑈𝑈𝑐𝑐
𝑈𝑈𝑠𝑠

𝐑𝐑 =

𝑅𝑅𝑎𝑎 0 0 0
0 𝑅𝑅𝑏𝑏 0 0
0 0 𝑅𝑅𝑐𝑐 0
0 0 0 𝑅𝑅𝑠𝑠

𝐋𝐋 =

𝐿𝐿𝑎𝑎 𝑀𝑀𝑎𝑎𝑎𝑎 𝑀𝑀𝑎𝑎𝑎𝑎 𝑀𝑀𝑎𝑎𝑎𝑎
𝑀𝑀𝑏𝑏𝑏𝑏 𝐿𝐿𝑏𝑏 𝑀𝑀𝑏𝑏𝑏𝑏 𝑀𝑀𝑏𝑏𝑏𝑏
𝑀𝑀𝑐𝑐𝑐𝑐 𝑀𝑀𝑐𝑐𝑐𝑐 𝐿𝐿𝑐𝑐 𝑀𝑀𝑐𝑐𝑐𝑐
𝑀𝑀𝑠𝑠𝑠𝑠 𝑀𝑀𝑠𝑠𝑠𝑠 𝑀𝑀𝑠𝑠𝑠𝑠 𝐿𝐿𝑠𝑠

𝑪𝑪 =

𝐶𝐶𝑎𝑎𝑎𝑎 −𝐶𝐶𝑎𝑎𝑎𝑎 0 0
−𝐶𝐶𝑎𝑎𝑎𝑎 𝐶𝐶𝑎𝑎𝑎𝑎 + 𝐶𝐶𝑏𝑏𝑏𝑏 −𝐶𝐶𝑏𝑏𝑏𝑏 0

0 −𝐶𝐶𝑏𝑏𝑏𝑏 𝐶𝐶𝑏𝑏𝑏𝑏 + 𝐶𝐶𝑐𝑐𝑐𝑐 −𝐶𝐶𝑐𝑐𝑐𝑐
0 0 −𝐶𝐶𝑐𝑐𝑐𝑐 𝐶𝐶𝑐𝑐𝑐𝑐

imbalance ratio 𝑘𝑘𝑒𝑒 is：
𝜀𝜀𝑛𝑛 = ⁄𝐼𝐼𝑛𝑛 𝐼𝐼1 (2)

𝑘𝑘𝑒𝑒 = 𝜀𝜀0 + 𝜀𝜀2 + 𝜀𝜀s × 100% (3)

where I is the sequence current, and the subscripts 0, 1, 2, and
S represent zero sequence, positive sequence, negative
sequence and shield.
The optimization variables are:

𝑋𝑋 = [𝑟𝑟𝑎𝑎, 𝑟𝑟𝑏𝑏 , 𝑟𝑟𝑐𝑐 , 𝑟𝑟𝑠𝑠,𝛽𝛽𝑎𝑎, … ,𝛽𝛽𝑠𝑠2,𝛾𝛾𝑎𝑎, … , 𝛾𝛾𝑠𝑠2] (4)
r is the radius of the conductor layer, β is the winding direction
angle, and γ is the winding direction.
optimal target function is:

𝐹𝐹 𝑋𝑋 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 = min𝑘𝑘𝑒𝑒 (𝑋𝑋) (5)
Constraint condition is：

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 < 𝛽𝛽𝑖𝑖 < 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 (6)

βmin and βmax is related to tape parameters.

2 STRUCTURE OF TRI-AXIAL HTS CABLE 

Fig. 1 structure of tri-axial HTS cable Fig. 2 structure of two-section-cable

Fig. 3 equivalent circuit model

AC loss measurement of a tri-axial superconducting cable based on a digital compensation 
method
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Fig. 8 comparison of AC loss test value and simulation calculated value
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