

1. Motivation

- There are demands for mobile microwave power sources for different applications [1,2]
- It was shown that millimeter-wave (MMW) directed energy from a gyrotron offers significant advantages [1,2].
- The magnetic fields ~3 T generated by a superconducting magnet in a mobile and rugged cryostat are necessary.
- Our task was to analyze what kind of magnets could be optimal for such a device along with a cryogenic system for it.
- The superconducting magnet demands are in the Table I

TABLE I

PARAMETERS OF A SUPERCONDUCTING MAGNET DEMANDED

Parameter

Maximum magnetic field value in a homogeneous area, T Warm bore, mm Length of a homogeneous (±0.5%) of maximum field) section, mm Outer magnet diameter, mm

References

- 1. P. Woskov and D. Cohn, "Annual report 2009: millimeter wave deep drilling for geothermal energy, natural gas and oil MITEI seed fund program", PSFC Report, #PSFC/RR-09-11, 7 pages, 2009.
- 2. P. Woskov and P. Michael, "Millimeter-wave heating, radiometry, and calorimetry of granite rock to vaporization", J Infrared Milli Terahz Waves, vol. 33, 2012, 82-95.
- 3. V.S. Vysotsky, A.A. Konjukhov, G.S. Kurljantsev, et al, Autonomous superconducting magnet systems new conception for application with special conditions, *Proceedings of the MT-15*, Science Press, Beijing China, 1998, 506-509. 4. V. R. Karasik, A. A. Konjukhov, G. A. Agapov, et al, The First Mine Countermeasure Devices With Superconducting
- Magnets, Advances in Cryogenic Engineering, Vol. 41, 1996, 1057-1067.
- 5. M. Heiberger, A. Langhom, T.W. Hum et al, A Light-Weight Rugged Conduction-Cooled NbTi Superconducting Magnet For U.S. Navy Minesweeper Applications, Advances in Cryogenic Engineering, Vol. 41, 1996, 1087 – 1095.
- 6. B. Haid, H. Lee, Y. Iwasa, et al, Stand-Alone Solid Nitrogen Cooled "Permanent" High-Temperature Superconducting Magnet System, IEEETransactions On Applied Superconductivity, VOL. 11, NO. 1, 2001, 2244 - 2247.
- 7. A. Molodyk, S. Samoilenkov, A. Markelov, A. et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Sci Rep 11, (2021), 2084. https://doi.org/10.1038/s41598-021-81559-z
- 8. V.S. Vysotsky, V.R. Karasik, A.A. Konjukhov, A.I. Rusinov, Design and coil protection of the high current density autonomous superconducting magnets for mine sweeping, Advances in Cryogenic Engineering, v.41, 1996, 1069-1076. 9. Vysotsky V.S., Karasik V.R., Konjukhov A.A., Tsikhon V.N., Persistent mode switches and automatic power supply for
- autonomous superconducting magnets, Advances in Cryogenic Engineering, v.41, 1996, 1077-1086.
- 10.Y. Iwasa, Case Studies in Superconducting Magnets, New York and London: Plenum Press, 1994. 11.V.S. Vysotsky, V.R. Karasik. A.A. Konyukhov, Current leads with forced cooling for magnets operating in the "frozen
- mode", in: "Problems of Applied Superconductivity" (Proceedings of Lebedev Institute, v. 121) Moscow, Nauka, 1980, 83-88 in Russian.

Paper WED-PO2-505-02, MT-27 Conference Fukuoka, Japan, 15-19 Nov. 2021

Conceptual design of the mobile cry for novel microwave technology

V. V. Zubko, S.S. Fetisov, V. V. Vysotsky, Russian Scientific R8 M. Yu. Glyavin, M.D. Proyavin Institute of Applied F of the Russian Academy of Sciences

2.Two HTS and two LTS magnets

	NET
Parameter `Value	
Outer magnet diameter, mm257.2Magnet length, mm411.6Radial number of turns224Axial number of turns98Total turns21952Total length of a tape necessary,10631	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Energy stored, J 32735	a b Fig.1. Magnet field distribution in the center of magnets (R=0). a – 50 A
TABLE III PARAMETERS OF THE 100 A HTS SUPERCONDUCTING MAGNE	
Parameter `Value	$= = \begin{bmatrix} 0 \\ * \\ 0 \\ a \\ b \\ c \\ c$
Outer magnet diameter, mm186.8Magnet length, mm378Radial number of turns109Axial number of turns90Total turns9810Total length of a tape necessary,4208	$a \qquad b$ Fig. 2. Relative magnetic field along the axils of a magnet in ±30 mm
m Energy stored, J 21296	distance. a – 50 A magnet, b – 100 A magnet. $\Delta B < 0.5\%$
Jc(4,2K;5T), kA/mm ² Cu/SC ratio RRR Insulation thickness, mm TABLE V PARAMETERS OF THE NBTI 100 A SUPERCONDUCTING MAGNE	2,36 1,4 -200 -150 -100 -50 0 50 100 150 200 1,4 -200 -150 -100 -50 0 50 100 150 200 2 (mm) A Fig. 3. Magnet field distribution in the center of NbTi magnets (R=0). a -100 A magnet, b - 275 A magnet 0,3 R 0,3 R 0,3 R 0,3 R 0,3 0,50 0,50 0,50 0,50 100 150 20 0,50 100 150 20 1,4 -200 -150 -100 -50 0,50 100 150 20 1,4 -200 -150 -100 -50 0,50 100 150 20 1,4 -200 -150 -100 -50 0,50 100 150 20 100 150 20 1,4 -200 -150 -100 -50 0,50 100 150 20 100 100 150 20 100 100 100 100 100 100 100 100 100 100
Parameter`ValueOuter magnet diameter, mm159Magnet length, mm400Radial number of turns22Axial number of turns460Tatel turns400	$= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
Total turns 10120 Total length of wires necessary, 4110	Fig. 4. Relative magnetic field along the axils of a NbTi magnet in ± 30 mm distance. a - 100 A magnet, b - 275 A magnet. $\Delta B < 0.30-0.35\%$
Total length of wires necessary, 4110 m Energy stored, J 19128 TABLE VI PARAMETERS OF THE NBTI 275 A SUPERCONDUCTING MAG	NET $along \pm 30 \text{ mm of the axis for both magnets.}$ $\begin{bmatrix} 12 \\ 11 \\ \vdots \\ 9 \end{bmatrix}$
Total length of wires necessary, 4110 m Energy stored, J 19128 TABLE VI	along ± 30 mm of the axis for both magnets. 12 11 J45T42R=236*10*AAT 11 J45T42R=236*10*AAT 11 J45T42R=236*10*AAT
Total length of wires necessary, m 4110 Energy stored, J 19128 TABLE VI PARAMETERS OF THE NBTI 275 A SUPERCONDUCTING MAG Parameter Value Outer magnet diameter, mm 134 Magnet length, mm 400 Radial number of turns 8 Axial number of turns 460 Total turns 3680	NET u = 12 along ±30 mm of the axis for both magnets. u = 12 $u = 12$ $u = 1$

Outer magnet diameter, mm	159	₩ ₩ 9_0,1
Magnet length, mm	400	≝ 0,1
Radial number of turns	22	
Axial number of turns	460	-30 -3
Total turns	10120	
Total length of wires necessary,	4110	а
m		Fig. 4.
Energy stored, J	19128	mm di
		along ±
TABLE VI		12
PARAMETERS OF THE NBTI 275 A SUPER	CONDUCTING MAGNET	
 Manufacture and Annual Transformed Transformer and Annual Transformer (Annual Transformer) 	onderen en die en daar en die de en die en eerste ander die de	E 9
Parameter	`Value	Magnetic field (T)
Outer magnet diameter, mm	134	il 5
Magnet length, mm	400	60 4 C 3
Radial number of turns	8	2 2
Axial number of turns	460	
Total turns	3680	0 5
Total length of wires necessary,	1425	а
m		Fig. 5.
Energy stored, J	47444	-
	17144	magnet

4. CONCIUSIONS

We considered approaches to develop mobile MMW devices with 3 T magnetic field generated by a superconducting magnet. Two types of HTS and LTS superconducting magnets analyzed. All magnet can provide magnetic field parameters demanded with proper field uniformity. HTS wires are by the order of value more expensive than LTS wires. Three possible cooling methods and cryostats are discussed based on previously published and tested experiences [3-6]. Each method is feasible, but optimization and cost analysis is necessary The future look of the mobile 3 T MMW system with superconducting magnets will be developed in future based on the ideas of this paper.

`VALUE	
3	
100 60	
<600	

yomagnets gies &D Cable Institute Physics								
s were								
Comparisor Magnet	HTS and	LTS 3 T SU HTS 100 A	Derconducti	ITS 275 A				
Length of wires Cost of wires	10,6 km ~ \$ 160 000	4,2 km ~\$ 130 000	4.1 km ~\$ 5000	1.4 km ~\$ 4500				
Stored energy Mechanical Stability	32 kJ High in solid nitrogen	21 kJ High in solid nitrogen	~19 kJ High for impregnated winding	17 kJ High for impregnated winding				
Superconducting Stability	High, very low normal zone propagation velocity	High, very low normal zone propagation velocity	Good, with 1.5 – 2 safety margins	Good, with 1.5 – 2 safety margins				
Protection issues	Unclear	Unclear	Well-known and without problems	Well-known and without problems				
Cooling methods	Solid nitrogen, new and not well developed	Solid nitrogen, new and not well developed	Undirect cooling by crycoolers	Undirect cooling by crycoolers				
	Undirect cooling by crycoolers	Undirect cooling by crycoolers	Liquid helium cryostat	Liquid helium cryostat				

3. Cryostats

To map out the ways of development of mobile cryostats for MMW, three ideas from literature were considered Cryocooler cooled cryostats [5] - well developed but large mass and need a lot of power for compressors and cryocoolers.

Solid nitrogen cryostat [6] – interesting new idea, but could a be problem how to keep the nitrogen solid. Autonomous cryostats [3,4] - well developed and tested in rough conditions [4], but needs periodical liquid helium supply. Anyway, 96 hours of interrupted work are feasible [3,4].