

Conclusions

in monotonic and cumulated / cyclic loadings. Electrical test underestimates the damage phenomenon and doesn't allow to evaluate the initiation of damage. ⇒ Investigation to evaluate if cracks can appear at low pressure without macroscopic impact and could lead to degradation with a cyclic loading.

Acknowledgement: Thanks to O. Kalougine for the preparation of the sample and G. Peiro to operate during test.

Effect of transverse compressive stress on Nb₃Sn Rutherford cables for accelerator magnets

Questions (

✓ ■ Effect of cyclic loadings (mech. & thermal) at lower pressure? At which pressure / stress level the first cracks appear? Physical phenomena and damage process involved?

Ref.: [1] A. P. Verweij et al., IEEE Trans. Appl. Supercond., 1999, doi: 10.1109/77.783259. [3] F. Wolf et al., IEEE Trans. Appl. Supercond., 2018, 10.1109/TASC.2017.2780850. [2] P. Ebermann et al., Supercond. Sci. Technol., 2018, 10.1088/1361-6668/aab5fa. [4] F. Nunio et al., IEEE Trans. Appl. Supercond., 2019, doi: 10.1109/TASC.2019.2903981.

Perspectives & On-going work

27th International Conference on Magnet Technology (MT27) Fukuoka, Japan / 2021

		Caple Parameters	
		ID	H15OC0220B
Strand Parameters		Number of strands	40
Architecture	RRP 108/127	Transposition pitch	100 mm
Manufacturer	OST	Keystone	0.808 °
Diameter	0.7 mm	Mid-thickness	1.25 mm
Sub-element size	50 µm	Width	14.7 mm
Cu / non Cu	1.19	Insulation	S-2 glass
Ic (4.3 K, 12 T)	470 A		C-shaped MICA
RRR	280	Core material & dim.	316L (24.3 μm x 12 mm)
		Impregnation	CTD-101K

- Metallography
- Lower stress cases,
- Longitudinal cross-section,
- Statistics (crack density, size, pattern).
- Inverted double-stack configuration

Contact: gilles.lenoir@cern.ch

CoCaSCOPE approach [4]