

Contribution ID: 579 Contribution code: WED-PO2-604-07

Type: Poster

Influence of Zn addition in Cu matrix on the mechanical and superconducting properties of Nb₃Sn conductor

Wednesday 17 November 2021 10:30 (20 minutes)

New generation accelerators, such as future circular collider (FCC), require superconducting dipole magnets with non-copper J_c of 1500 A/mm² at 16 T, 4.2 K. Nb₃Sn is the only proven superconductor with large-scale industrial production. Still, present Nb₃Sn wires can not meet the required conditions, and improvement in the fabrication is needed. Kobe Steel Ltd. has developed Nb₃Sn wire by brass matrix distributed-tin (DT) method to achieve high J_c and high mechanical strength.

The elemental addition approach to the Cu matrix was opted to enhance the Nb₃Sn formation and contribute to improving the mechanical properties of the matrix. A heat-treated helical sample soldered on the Walters spring (WASP) to measure the strain dependence of critical current with relatively long length and lower electric field criterion. Axial strain is applied to the wire by applying torque on the WASP at 16 T, 4.2 K. In this paper, the I_c –strain characteristics of Nb₃Sn conductor, with and without Zn addition in Cu matrix at 16 T, 4.2 K, and S-S behavior at RT and 77 K is presented, and the impact of the findings on the Nb₃Sn conductor development to achieve the FCC target is discussed.

Primary author: Dr DHAKARWAL, Mukesh (High Energy Accelerator Research Organization/KEK)

Co-authors: Prof. SUGANO, Michinaka (High Energy Accelerator Research Organization); Prof. OGITSU, Toru (High Energy Accelerator Research Organization); KAWASHIMA, Shinya (KOBE STEEL, LTD.); Dr NISHI-JIMA, Gen (National Institute for Materials Science); Dr BANNO, Nobuya (National Institute for Materials Science)

Presenter: Dr DHAKARWAL, Mukesh (High Energy Accelerator Research Organization/KEK)

Session Classification: WED-PO2-604 Low Tc Wires and Cables