

Abstract

- The magnet assembly of EDIPO was irreversibly damaged in 2016.
- However, the cryostat, cryo-plant, power supply and high current transformer of the test facility remain intact.
- **EDIPO 2** (the upgraded EDIPO test facility) will provide a unique test bed for superconducting cables for fusion and accelerator magnets, as well as, other applications.
- Enhanced features compared to previous magnet design:

	EDIPO 1	EDIPO 2
B _{center aperture}	12.35 T	15 T
Aperture size	90×141 mm²	144×144 mm
Homogeneous field length (1%)	680 mm	1000 mm

- **Retained key features:**
- Wide range of sample temperature: $T_{sample} = 4.2 80$ K.
- **High sample current**: $I_{sample} \le 100 \text{ kA}$.

Cable design

- Rutherford cable considered until 2020 (44×1.1 mm FCC strands):
 - I_{op} limited to ~10.6 kA
 - One of the largest aspect ratio Rutherford cables ever built (quite stiff)
- An alternative cable design operating at higher current will allow us to:
 - **Reduce the maximum voltage** (V_{max}) during an emergency discharge of the magnet:

$$V_{max} = L \frac{dI_{op}}{dt} = \frac{2E}{I_{op}\tau}$$

- Make a better use of the existing 18 kA power supply
- The proposed designs are **two-stage flat** cables, based on a **6+1** layout, which might also result in a more mechanically flexible design. Alternative designs

	Strand diam. (mm)	Cu:nCu	Cable layout	# strands	Cable width (mm)	Cabl thick (mm
FCC cable	1.1	1.0	Rutherford	44	26.2	1.95
4-coil alt.	0.7	1.0	26×(6+1)	182	25.9	3.48
6-coil alt.	0.7	1.0	22×(6+1)	154	21.9	3.48

Progress on the design of 15 T magnet of the EDIPO test facility

X. Sarasola, P. Bruzzone, R. Guarino, K. Sedlak and E. Solodko

École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-5232 Villigen, Switzerland

2D magnet design

- Unlike accelerator magnets, the **field quality** of the generated background field is **not a crucial design target** in a test facility. • 2D magnet design:
 - **Shell-based** mechanical structure:
 - Outer shell made of steel
 - Adjustable pre-compression
 - Use of detachable winding poles
 - If pre-compression is kept at a minimum level, during operation: A ~1.5-mm gap opens between the test well and the coils
- - The test well is stress-free
- 4 and 6-coil designs are considered (windings aligned in low and high field side)
- Assumptions:
- $j_{c.nc} = 3093 \text{ A/mm}^2 @ 12 \text{ T}, 4.2 \text{ K}$
- 15 T reached in the bore center operating at 85% of short sample

2D magnetic finite element analyses:

	4-coil (FCC cable)	4-coil design	6-co desi
Strand diameter	1.1	0.7	0.
Cable layout	Rutherford	26×(6+1)	22×(6
Area of insulated conductor, A _{cond}	30504	30251	249
Operating current, I _{op} (85%*I _{ss})	10.64	17.51	17.
B field in the aperture center, B _{center}	14.99	15.00	15.
Peak field in the winding pack, B _{peak}	16.17	16.21	15.
Number of turns per pancake, n _{turns,pan}	61	37	24
Total number of turns, n _{turns,total}	488	296	28
Total ampere-turns, I _{total}	5.19	5.18	5.1
Total stored energy in the magnet, E _{total}	7.51	7.51	6.5
Magnet self inductance, L	132.6	49.0	41
Current density insulated conductor, jeng	170.3	171.4	204
Copper current density, j _{Cu}	509.1	500.0	598
Lorentz stress in the coils, $\sigma_{\text{Lorentz coils}}$	129	130	11

• 2D mechanical finite element analyses:

- The stress in the coils is below 130 MPa
- Also below allowable limits in other components
- **Quench protection** studies conducted with **STEAM-LEDET**:
- Key parameter: filament twist pitch
- EDIPO 2 can be successfully protected with an energy extraction scheme

(%)

16%

20%

20%

3D magnet design

• 4-coil design:

- Straight section: 960 mm

- Straight ramp: 25 mm
- Uniform field length: 959 mm

He vessel and pressure relief system • The EDIPO 2 magnet will be **bath-cooled at 4.2 K**. The liquid helium vessel is under construction. Main design parameters: Operating pressure: 1 bar • Accident pressure: 3 bar • Leak rate < 10^{-8} l·bar/s • The pressure relief system follows a staged pressure protection concept. Both a loss of vacuum and an unprotected quench are considered as worst-case accidents. • A DN65 bursting disc is chosen as safety relief device (based on EN 13648-3 and EN ISO 4126-6).

Conclusions

- Status of the magnet design:
- features:
- minimize the stress in that region.
- construction.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

• Field in the ends more than 1.5 T lower than in the straight section **Preliminary 3D mech FEA** show unacceptable stress in the coil ends

• The magnet of EDIPO 2 relies on a **flared-end block coil design** (similar to accelerator magnets), but it includes some **innovative**

• Use of a two-stage flat cable layout • **Minimal pre-compression** applied to the coils • The mechanical design of the **coil ends** is under study to Other design aspects satisfy the stringent design criteria to

generate a background field of 15 T in a large aperture. • The liquid He vessel that will host the magnet is under

The emergency pressure relief system is under design.

