Numerical modelling of the pulse magnetization of a bulk array used as field poles of a superconducting machine.

Antomne A. Caunes^{1*}, Hayato Imamichi¹, Nagisa Kawasumi¹, Mitsuru Izumi^{1,2} and Tetsuya Ida¹ ¹Tokyo University of Marine Science and Technology ²National Institute of Technology, Toba College

Nov. 15-19, 2021 Fukuoka, Japan 19th November 2021 11:30

Introduction

- Model used in the simulation
- Different geometries
- Results and discussion
- Conclusion

Introduction

Models used in the simulation

Different geometries used: multiple coils

Example of magnetization process

Different geometries used: unique coil

Results using a field cooling method

Results with 3 coils V shape

Results with 3 coils A shape

Results with 1 large coil

Conclusion

- Pulse-field magnetization using 1 large copper coil can trap a similar distribution of magnetic flux density in the 3 bulks to a field cooling method at 77 K.
- The 1 large coil may not be suitable for practical application due to the high magnetizing energy required to obtain a good magnetization.
- 3 vortex-type coils in a "V shape" connected in series allowed to trap a better distribution of the magnetic flux density at 40 K compared to other geometries.

