

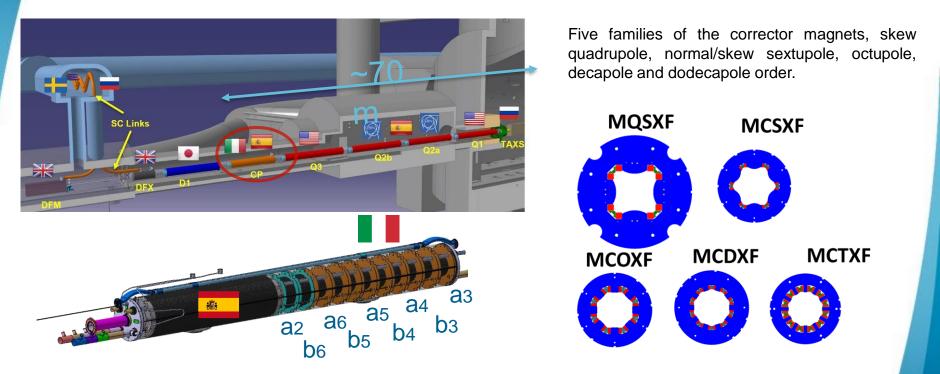
International Conference on Magnet Technology

Fukuoka, Japan Nov. 15-19, 2021

Magnetic Measurements Results and Analysis of the First Batches of Superferric Magnets for the HL-LHC High Order Field Correction

Ernesto De Matteis

On behalf of INFN Milan – LASA

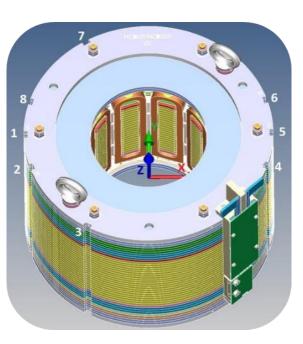

27th Magnet Technology Conference, Fukuoka, Japan - 17th Nov 2021

Outlines

- High Order Correctors for HL-LHC
 - Superferric Design
- Measurement Setup
- Magnet families measurements results
- Results analysis and production monitoring
 - Field integral vs pole length
 - Reassembly effects
- Conclusions

High Order Corrector Magnets for HL - LHC

Corrector Package, a "prima" for super-ferric in a collider

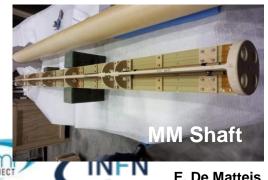


E. De Matteis - 27th Magnet Technology Conference MT27 - 17 Nov 2021 - WED-OR2-103-05

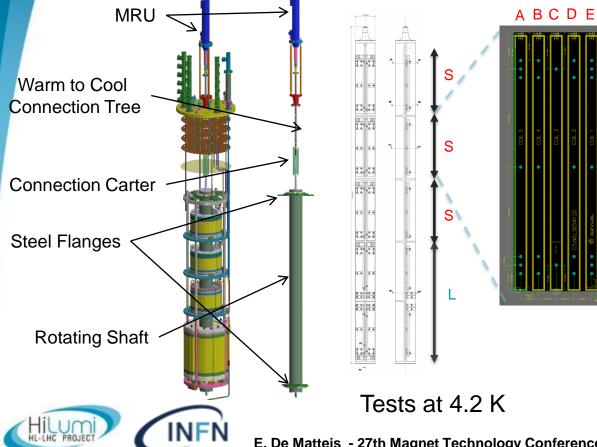
Superferric - Magnet Design

Electromagnetic and mechanical design 'Superferric'

- Racetrack NbTi coils installed on iron laminations;
- Two different wires used to wind six different types of coils;
- The main advantage of the racetrack windings is to have a shorter fringe field areas considering the required integrated strengths.
- A disadvantage is the saturation of the iron that limits the maximum achievable field.


See also M. Statera presentation (WED-OR2-103-05)

Measurement setup (1/2)


Rotating coil system (from CERN):

- Electronic rack
- 2 FDI (Fast digital Integrator)
- MRU motor unit (motor + encoder + slip rings)
- FFMM software (Flexible Framework for Magnetic Measurements)
- Magnetic meas. shaft

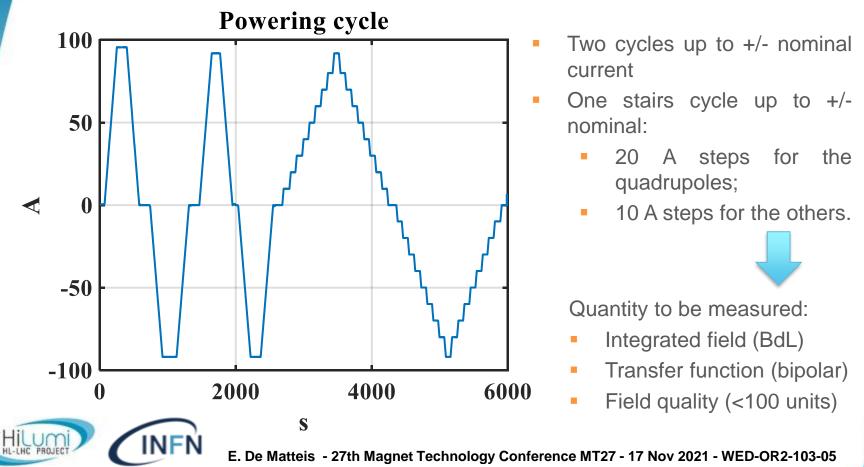
Measurement setup (2/2)

Series Shaft (CERN)

G-10 t-beam internal support

- Diameter ~130 mm
- Measurement radius 55 mm

5 equal PCB


- 1 segment for each short magnet
- 2 segments for long magnets
- Active length of 355 mm
- Compensation of vibrations by averaging the measurements from coils in opposite position (A and E) except for the quadrupole (compensation scheme A, A-B-C+D)

Measured Magnets Families

- 5 magnet families:
 - Skew quadrupole (MQSXF);
 - Normal and skew sestupole (MCSXF/MCSSXF);
 - Normal and skew octupole (MCOXF/MCOSXF);
 - Normal and skew decapole (MCDXF/MCDSXF);
 - Normal and skew dodecapole (MCTXF/MCTSXF).
- First magnet batches already manufactured by industry and tested at LASA.
- Magnetic measurements during cold tests at 4.2 K (18 magnets).

Powering cycle for MM

MM Results - BdL

	Order	Magnet		Model	Measure	d at LASA
			Current [A]	BdL [T mm]	BdL [T mm]	diff [%]
	2	MSQXF1	174	700.0	718.8	2.7
Quadrupoles		MSQXF2			720.36	2.8
		MSQXF3			719.6	2.8
	3	MCSXF02		93.5	95.22	1.8
		MCSXF03			95.22	1.8
Sestupoles		MCSXF05	99		95.31	1.9
		MCSXF06			95.27	1.9
		MCSXF07			95.34	2.0
	4	MCOXF03	102	70.7	71.59	1.3
Octupoles		MCOXF04a			71.54	1.2
Octupoles		MCOXF04b			71.48	1.1
		MCOXF07			71.59	1.3
	5	MCDXF03	92	38.7	39.56	2.2
Decapoles		MCDXF07			39.60	2.3
		MCDXF08			39.62	2.4
Long Dodecapoles	6N	MCTXF2	85	86.1	88.82	3.1
Long Doddodpoloo		MCTXF3			88.20	2.4
Short Dodecapoles	65 65	MCTSXF01	84	17.2	17.33	0.6
Unon Dodecapoles		MCTSXF02	04	17.2	17.39	0.9

Field integral repeatability <0.2%

Field integral 1% to 3% w.r.t. model

Field quality well below 100 units (max spec.)

Field quality high reproducibility: few units


Quadrupoles – Results

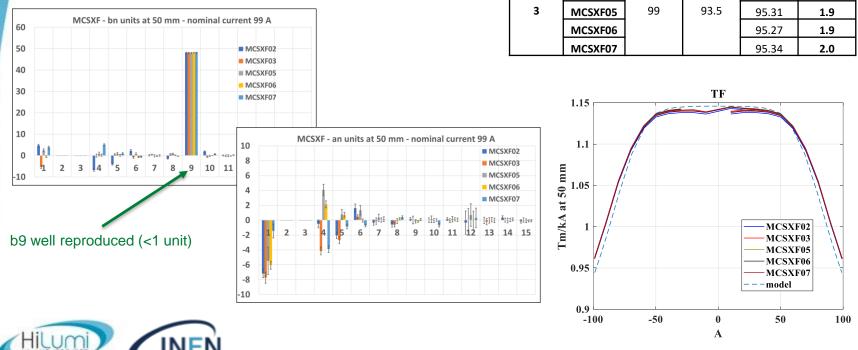
- Magnet-to-magnet repeatability among quadrupoles is 0.1%
- Difference wrt the model bigger than 2%
- Field quality within specs (<100 units)

MQSXF - bn units at 50 mm - nominal current 174 A

10

Order	Magnet		Model	Measured at LASA	
		Current [A]	BdL [T mm]	BdL [T mm]	diff [%]
	MSQXF1			718.8	2.7
2	MSQXF2	174	700.0	720.36	2.8
	MSQXF3			719.6	2.8

Sestupoles – Results


Order

Magnet

MCSXF02

MCSXF03

- Magnet-to-magnet repeatability among sestupoles is 0.2%
- Difference wrt the model of about 2%
- Field quality within specs (<100 units)

E. De Matteis - 27th Magnet Technology Conference MT27 - 17 Nov 2021 - WED-OR2-103-05

Measured at LASA

diff [%]

1.8

1.8

BdL [T

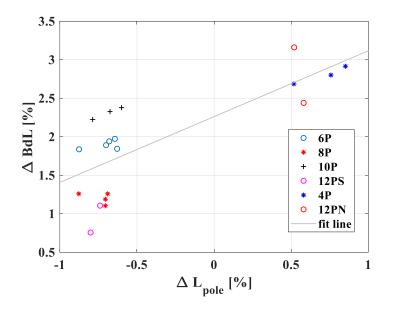
mml

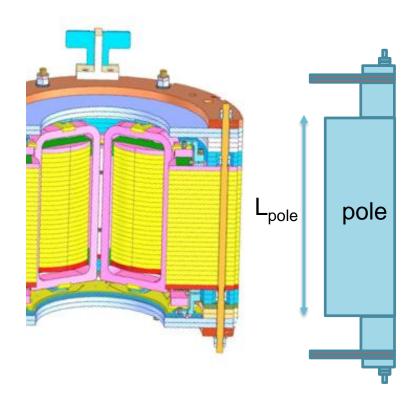
95.22

95.22

Model

BdL IT

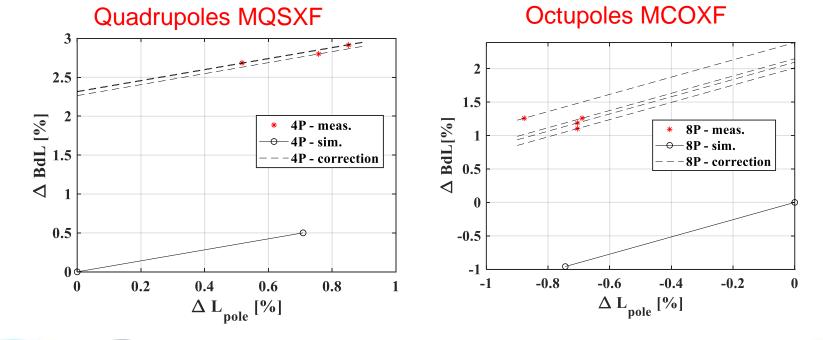

mml


Current

[A]

Integrated field vs pole length

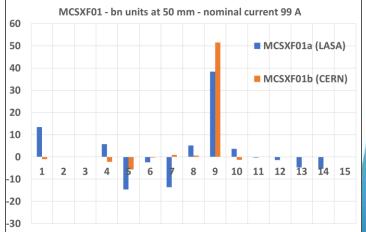
- Clear Correlation between BdL and Pole length
- Same family, same region



E. De Matteis - 27th Magnet Technology Conference MT27 - 17 Nov 2021 - WED-OR2-103-05

Integrated field vs pole length

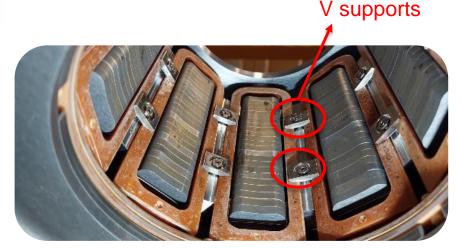
- After correction: ~2% residual discrepancy measurement-simulations
- First candidate: BH curve of Iron (to be measured)

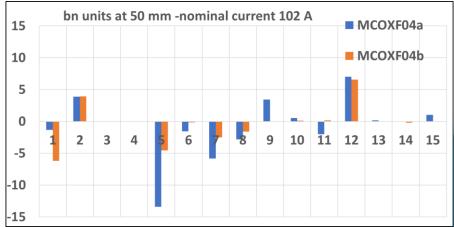


Reassembly effects

- First series sestupole, MCSXF01, reassembled for wedges preload modification
- MCSXF01a tested at LASA
- MCSXF01b tested at CERN
- Negligible effects of the reassembly for the BdL and the field quality

Ord	er	Magnet		Model	Measured	
			Current [A]	BdL [T mm]	BdL [T mm]	Diff [%]
		MCSXF01a (LASA)		02.5	95.29	1.9
3	MCSXF01b (CERN)	99	93.5	95.84	2.4	





Reassembly effects

- Octupole MCOXF04 additional V supports
- MCOXF04a and MCOXF04b tested at LASA
- Negligible effects on the BdL and on the field quality

Order	Magnet		Model Measured at LASA		d at LASA
		Current [A]	BdL [T mm]	BdL [T mm]	diff [%]
4	MCOXF04a	102	70.7	71.54	1.2
	MCOXF04b			71.48	1.1

Conclusions

Magnetic measurements of the first HO corrector series magnet batches:

- 18 magnets measured at LASA
- Field integral repeatability <0.2%;
- Field integral 1% to 3% w.r.t. model;
- Field quality is well within specs (multipoles<100 units) for all the magnets.
- Results Analysis:
 - Clear Correlation between BdL and Pole length
 - 2% residual discrepancy measurement-simulations after correction (BH curve of Iron is the candidate)
- Production monitoring:
 - Negligible effects of the reassembly on the magnetic performance.
- 27 magnets still to be tested out of the 54 total (8 tested at CERN).

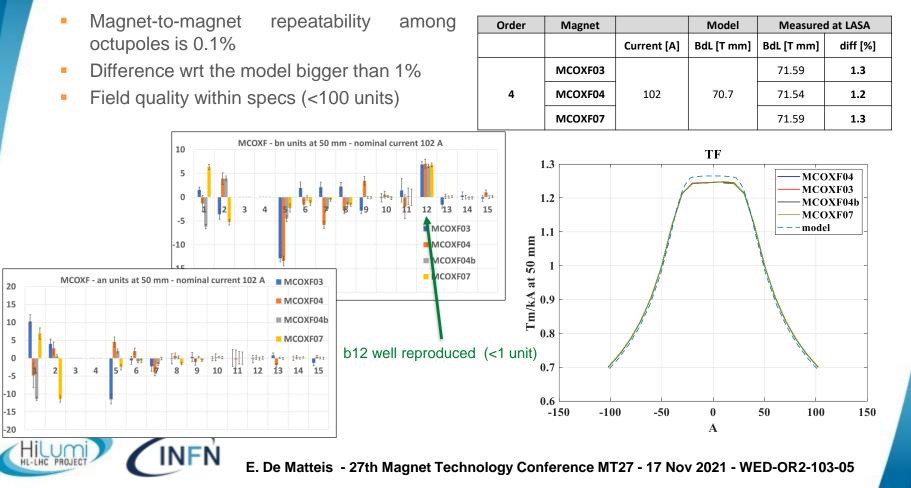
Thanks for your attention!

ernesto.dematteis@mi.infn.it

INFN LASA team:

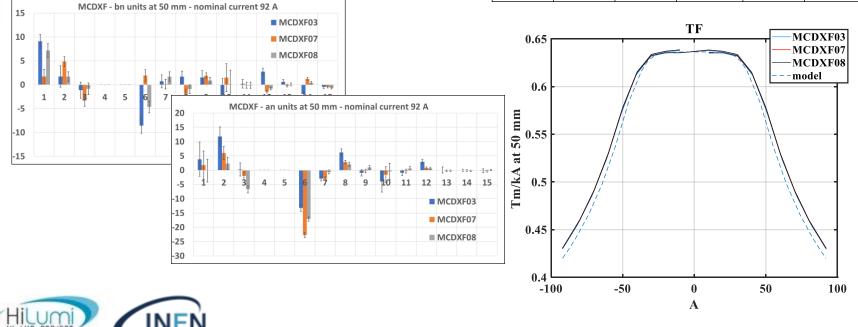
S. Mariotto, F. Broggi, A. Leone, A. Paccalini, A. Palmisano, A. Pasini, D. Pedrini, M. Prioli, L. Rossi, M. Sorbi , M. Statera, M. Todero, R. U. Valente, C. Uva.

CERN colleagues: L. Fiscarelli, E. L. Gautheron, A. Musso, E. Todesco



Spare slides

E. De Matteis - 27th Magnet Technology Conference MT27 - 17 Nov 2021 - WED-OR2-103-05


Octupoles – Results

Decapoles – Results

- Magnet-to-magnet repeatability among decapoles is 0.2%
- Difference wrt the model bigger than 2%
- Field quality within specs (<100 units)

Order	Magnet		Model	Measure	d at LASA
		Current [A]	BdL [T mm]	BdL [T mm]	diff [%]
5	MCDXF03	92	38.7	39.56	2.2
	MCDXF07			39.60	2.3
	MCDXF08			39.62	2.4

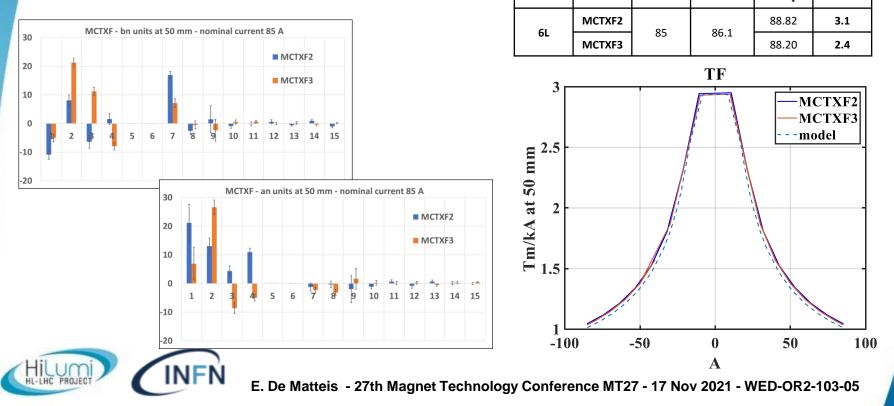
Normal Dodecapoles – Results

Magnet

Order

Calculations

Current [A] BdL [T mm]


Measured at LASA

diff [%]

BdL (T

mm]

- Difference wrt the model bigger than 2%
- Field quality within specs (<100 units)

Skew Dodecapoles – Results

Order

6S

Magnet

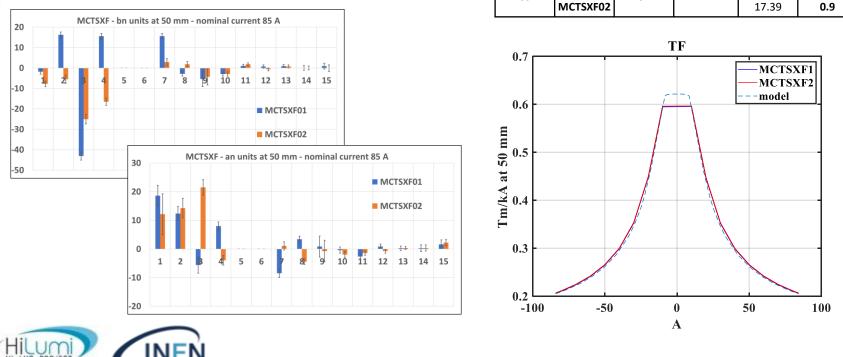
MCTSXF01

84

Model

Current [A] BdL [T mm] BdL [T mm]

17.2


Measured at LASA

17.33

diff [%]

0.6

- Difference wrt the model less than 1%
- Field quality within specs (<100 units)

